
 
1 Ph.D. Student of Structural Eng., Dep. of Civil and Environmental Eng., University of Alberta, Canada 
2 Assistant Professor of Structural Eng., Dep. of Civil and Environmental Eng., University of Alberta, Canada 

MODIFICATIONS OF INTEGRATION ALGORITHMS TO ACCOUNT FOR LOAD 
DISCONTINUITY IN PSEUDODYNAMIC TESTING 

 
 

S. Hadi Moosavi1, Oya Mercan2 

 
 

ABSTRACT 
When there is a sudden change in the loading (e.g., rectangular pulse), the 
discretized version of the load history will involve an artificial impulse, which 
manifests itself as an amplitude distortion in the structural response obtained by 
the numerical solution of the equation of motion. An approach to account for load 
discontinuity by modifying existing integration algorithms used in the solution of 
force equation of motion is introduced in this paper. Modified versions of four 
different algorithms, namely Central Difference, Newmark Explicit, α-method 
with a fixed number of iterations, and Rosenbrock-W integration algorithms are 
presented. The general approach in modifying an integration algorithm to account 
for load discontinuity is discussed and the improved accuracy of these modified 
algorithms is presented through numerical simulations. 

 
 

Introduction 
 

Pseudodynamic (PSD) test method is a displacement based experimental technique that 
can be used to determine the behavior of structural systems subjected to dynamic loading. In a 
PSD test, a direct step by step integration algorithm generates the command displacements by 
solving the force equation of motion. These displacements are imposed on the test structure by a 
servo-hydraulic system, and using the measured restoring force feedback from the deformed test 
structure, the integration algorithm computes the subsequent command displacements. For load-
rate insensitive structures, PSD testing method can be applied in slow time (using an expanded 
time axis), or for structures that exhibit load-rate dependent vibration characteristics, it can be 
applied at fast rates (ideally in real-time). Both the slow-time and real-time PSD testing have 
been successfully applied for seismic loading (Mahin 1985, Nakashima 1999), but if the loading 
history has a sharp discontinuity as in the case of pulse loading (see Fig. 1-a), the numerical 
solution of the force equation of motion will have an amplitude distortion which may render the 
PSD test results inaccurate. This is due to the extra impulse (shaded area in Fig. 1-b) introduced 
during the discretization of the loading history. 
 

To circumvent this problem, the use of step by step solution of the momentum equation 
of motion was suggested and the resulting improved accuracy was verified through numerical 
simulations (Chang, 2001, 2002, 2007a) and experiments (Chang, 1998). In this approach, the 
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force equation of motion is replaced by its integral form, which is the momentum equation of 
motion. As a result of the time integration of the load that appears on the right hand side of the 
momentum equation, provided that the area under the load history is computed correctly, the 
discontinuity in the load history is eliminated. Although the success of the momentum approach 
has been presented for Newmark explicit integration algorithm, replacing the force equilibrium 
equation with the momentum equation may not be a trivial task if one wishes to use an 
integration algorithm customized (e.g., unconditionally stable, implicit, real-time compatible) for 
particular testing needs. Other than the momentum approach, in an attempt to obtain an accurate 
solution in the presence of load discontinuity, Chang, (2007b) also proposed the use of a single 
time step immediately after the discontinuity that is much smaller than the discretization step 
size. This small step was recommended to be one-hundredth of the discretization step size or 
smaller. Especially within the context of real-time PSD testing, a variable time step is 
detrimental for it would result in inaccurate velocities as the displacement commands are 
typically imposed using a digital controller with a constant clock speed. 

 
The study presented here introduces an approach, which is referred to as limit approach, 

to account for the load discontinuity by modifying a given integration algorithm that solves the 
force equation of motion in its final form. Depending on the way a particular integration 
algorithm is formulated, these modifications generally involve updated force and/or acceleration 
values at the time of discontinuity. In the paper, the general approach (i.e., the limit approach) 
that introduces modifications to a given integration algorithm is discussed and then implemented 
to derive modified versions of the Central difference, Newmark explicit, α-method with a fixed 
number of iterations, and Rosenbrock-W integration algorithms. Both α-method and 
Rosenbrock-W algorithms are suitable for real-time testing, where the former is an implicit 
scheme. For each of the four integration algorithms considered in this paper, a summary of the 
original formulation is provided together with its modified version. The improved accuracy of 
the modified algorithms is presented through numerical simulations. 

 
The Limit Approach 

 
The limit approach starts by defining an intermediate step  just after the load 

discontinuity between times  (where the discontinuity takes place) and  (see Fig. 1-c). In 
order to be able to set it apart from the discretization time step size of  and thereby make the 
implementation of the limit approach for the modification of an algorithm easier to follow, the 
time step size associated with step  is identified as  It should be noted the load value  is 
the value of the load at the lower end of the discontinuity at step . From the original formulation 
of a given integration algorithm, the information for step  (which may include the displacement 
( , velocity ( ) and/ or acceleration ( ), or an intermediate quantity defined by the particular 
integration algorithm to march forward) can be obtained using the information from step  (see 
Fig. 1-c) and considering  and  In order to obtain the information at the lower end of the 
discontinuity  and thereby account for discontinuity effects properly, next step involves 
taking the limit of the expressions that define step  information where goes to zero. On Fig. 
1-d the information (i.e., the expressions for the load, displacement etc.) associated with are the 
results of this limit process. In programming the resulting modified algorithm, a flag needs to be 
set in order to identify the time step when discontinuity (i.e., step ) takes place. When that 
happens, the numerical values of for etc. need to be evaluated from the expressions 



obtained by the limit approach, and using these, the integration algorithm in its original form can 
march forward to compute information for step . 

 

 

 
 

Implementation of the Limit Approach 
 

Central Difference Method 
 

The discretized form of the equation of motion for a single-degree-of-freedom (SDOF) 
system at time step  is:  
 

 (1)
 
 Central difference method uses a finite difference approximation for velocity and 
acceleration (Chopra, 2007). With a constant time step size of  the velocity and acceleration at 
step  are expressed as:  
 

 
(2)

 
(3)

 
 Substituting the velocity and acceleration from Eqs. (2) and (3) in Eq. (1), and solving the 
expression for   
 

(4)

 
Implementation of Limit Approach to Obtain ( ) Information 
 

Considering Fig. 1-c and rewriting Eqs. (2) and (3) for step , velocity and acceleration at 
that step are: 
 

Fig. 1. (a) Load history with discontinuity, (b) Discretized load history, (c) Load history with step ,      
(d) Load history after performing the limit
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(5), (6)

 
Also, using the same equations, velocity and acceleration at step  can be expressed as: 
 

(7), (8)

 
Eqs. (9) and (10) express the equation of motion at time steps  and , respectively: 
 

 (9)

 (10)
 
 Once Eq. (9) is solved for  (after substituting for  and  from Eqs. (5) and (6)), the 
result can be used to replace  in Eq.(10) which then can be solved for  (after substituting 
for  and  from Eqs. (7) and (8)). Performing a limit where  gives an expression for 

 in terms of  and : 
 

 

(11)

 
Comparing Eq. (4) with Eq.(11), application of limit approach to Central difference 

method reveals that to account for the load discontinuity, only the load value for ( ) needs to be 
redefined as the average value of the loads at each end of the discontinuity. 

 
Explicit Newmark method 

 
Newmark family integration methods (Newmark, 1959) can be customized by selecting 

two parameters (  and ) which specify the variation of acceleration over a time step. These 
parameters also determine the accuracy and stability characteristics of the method. For  

 Newmark's method becomes explicit and conditionally stable: 
 

 (12)

 
(13)

(14)
 



Implementation of Limit Approach to Obtain ( ) Information 
 
Defining the information for step  using Eqs. (12)-(14) as required by the limit approach: 
 

 (15)

 
(16)

 (17)
 
Performing a limit on the above expressions where , will yield 
 

,   (18), (19)

 
(20)

where  
 

From above equations, it turns out that, while the values for displacement and velocity 
remain the same, the acceleration value at the lower end of the discontinuity  needs to be 
updated. By stepping forward to step  using the updated information from Eqs. (18)- (20) 
derived consistently with Newmark explicit method formulation, the load discontinuity will be 
taken care of properly. 

 
Rosenbrock 
 

Considering an SDOF system the general implementation of Rosenbrock integration 
method proposed by Lamarche (2009) for real-time pseudo-dynamic testing is described in      
Fig. 2. 

 

 Fig. 2. Rosenbrock integration algorithm 
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measure the restoring force  



 
Implementation of Limit Approach to Obtain ( ) Information  
 

Introducing step  and taking the limit for the Rosenbrock algorithm, it can be easily 
shown that  and  approach to  and , respectively (or equivalently  and  are the 
same as  and , respectively). As a result, for Rosenbrock algorithm to handle the load 
discontinuity properly, the information at step  right after the discontinuity needs to be 
calculated using ,  and  which are the same as , , and , respectively. 

 
Alpha method 

 
Alpha method (Shing et al 2002) is an implicit method used in real-time pseudo-dynamic 

testing which is based on Hilber -method (Hilber et al 1977). As can be seen from Fig. 3, Alpha 
method starts by computing a predictor displacement in stage , which is followed by a fixed 
number of iteration substeps in stages  and ; during the last iteration substep an equilibrium 
correction is performed. Through the equilibrium error correction (stages  and ) the 
displacement and restoring force values are made available for the computation of the next step 
predictor displacement and, as a result, the actuator moves without interruption. 
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Fig. 3. Alpha method algorithm 



 
Implementation of Limit Approach to Obtain ( ) Information  
 

Upon the application of the limit approach starting from stage  in Fig. 3, the predicted 
displacement at step  approaches to  after setting  (or equivalently ) and the 
displacement term in stage  becomes constant (i.e., ). Considering that both parameters 

 and  approach to  application of the limit to stages  and  gives: 
 

 (21)

(22)

(23)

 
 Eq. (23) is true for linear elastic systems. In stage  the expression for acceleration can 
be revised for step  as 
 

 
(24)

 
 Upon substituting the expression of  from stage  which has the expression for  
embedded from stage , and as a result of the cancellations that take place, the zero over zero 
indeterminacy as  approaches to zero is eliminated; and the acceleration for  is obtained: 
 

(25)

where  
 
And the expression for velocity in stage  yields 
 

 (26)
 

The above application of the limit approach in modifying Alpha method reveals that, to 
compute the information at step  right after the discontinuity, information from  needs to 
be used where the updated acceleration from Eq.(26) is used together with the value of the load 
at the lower end of the discontinuity. 
 

Numerical Simulations 
 

In order to verify the success of the proposed modifications in handling the load 
discontinuity, numerical simulation results for each integration algorithm are presented here. An 
undamped linear SDOF system with , and  
(i.e.,undamped natural period ) subjected to the two loading cases shown in Fig.4 is 
considered. Fig. 4 (a) is a step pulse with an amplitude of 10 kips and duration of 0.1 sec.; 



whereas in Fig. 4 (b) the load value changes from +10 to -10 kips at the discontinuity and then 
increases to zero linearly over a duration of 0.1 sec. 

 
 

 
 

Fig. 4. Load cases with discontinuity 
 
When discretizing the loading history for subsequent use in the step-by-step solution of 

the equation of motion, selection of a very small time step will minimize the extra impulse and in 
turn the amplitude distortion introduced in the response. To be able to check the ability of the 
modified algorithms in handling large extra impulses, the time step size for the numerical 
simulations was selected as 0.1 sec.; which also made the results of this study comparable with 
that of Chang (2001), where it was shown that time step can be selected as large as the impulse 
duration when the momentum equation is used. It needs to be pointed out that for Central 
difference and Newmark explicit algorithms  =0.1 sets the limit for accuracy, beyond which the 
amplitude decay and period elongation introduced by the algorithm may be significant (Chopra, 
2007). 
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Fig. 5. Simulation results for the loading case in Fig. 4(a) 

 
Fig. 5 compares the theoretical response with the results obtained from the original 

(unmodified) and modified versions of the integration algorithms considered in this study. Both 

(kips) (kips)

(sec) (sec) 



versions of each algorithm were programmed in MATLAB. In the modified version, a flag was 
set to identify the discontinuity, and the modified expressions for load and/or acceleration were 
introduced as derived here. As can be seen from Fig. 5, there is a significant difference between 
the unmodified and theoretical responses; whereas the modified results are in good agreement 
with the theoretical response. Similarly, for Fig. 6 which considers nonzero load values after the 
discontinuity, the proposed modifications provide considerable improvements in the accuracy of 
the numerical results. The unmodified responses from each algorithm between Fig. 5 and 6 are 
the same as expected, since with a time step size of 0.1 sec., the discretized versions of the load 
cases in Fig. 4 (a) and (b) are the same (see Fig. 1 (b)). Depending on the accuracy 
characteristics of the particular integration algorithm, the agreement between the theoretical 
response and the modified numerical solution can be improved by using a smaller time step.  
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Fig. 6. Simulation results for the loading case in Fig. 4(b). 

 
Conclusion 

 
Pseudodynamic testing method has been implemented successfully both in slow and real-

time for seismic loading of structures. However, when a sharp discontinuity exists in the loading 
history as in the case of pulse loading, the discretized version of the load will have an extra 
distortion which manifests itself as an amplitude distortion in the numerical response and may 
render the pseudodynamic test results inaccurate. Other than using very small time steps in 
discretizing the load, previous studies proposed the use of numerical solution of the momentum 
equation of motion that replaces the force equation of motion. Although the success of the 
momentum approach has been presented using Newmark explicit integration algorithm, 
replacing the force equilibrium with the momentum equation may not be a simple task if one 
wishes to use an integration algorithm customized for particular testing needs. The study 
presented here introduces a limit approach that considers the force equation of motion and 
modifies the integration algorithms in their final form to account for the load discontinuity. The 
general modification approach and its implementation to four integration algorithms are provided 



together with numerical simulation results that show the improved accuracy of the modified 
algorithms. 
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