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ABSTRACT 
 

 In this paper, a folded cantilever shear structure with long natural periods and 

endued with high damping constant is proposed in order to improve seismic 

performance of middle-multistory building which vibrates mainly as the shear 

structure. Therefore, the proposed folded cantilever shear structure is designed 

mainly consisting of two parts namely, fixed shear sub-structure and movable 

shear sub-structure which are interconnected with each other by connection beam 

at the top parts of the fixed and movable substructures. Besides, additional 

viscous dampers connect both fixed and movable shear sub-structure with each 

other horizontally on the basis of building stories. To investigate period, damping 

constant and shape of the natural damping vibration modes of the proposed 

structure analytical model is tested theoretically. As it is expected, while the 

obtained natural period of ordinary cantilever shear structure is T1=1.0s, the 

obtained natural period of proposed folded cantilever shear structure is T2=2.1s 

which clarifies that the anticipated seismic performance for proposed structure is 

acquired. Eventually, the proposed structure provides rich damping coefficients 

and long natural period for multistory structures. 

  

  

1. Introduction 

 

 Generally the seismic acceleration response of multistory building decreases by extending 

the natural period of the multistory building in regions which have long natural period exceed 

about 1 second. The natural period of the multistory building which vibrates mainly as the shear 

structure increases in proportion to the number of stories. Therefore, it is an efficient method to 

expand the natural period of the multistory building over about 2 seconds by piling up story in 

terms of seismic design. The base isolation systems (Soong and Costantinou 1994) which 

generate the natural sway vibration mode with a very long period can decrease the seismic 

acceleration response of the multistory building, but the base isolation systems are expensive and 

are usually applied to the few-multistory buildings with the structural period under about 1 sec. 
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 Consequently, it is clarified that a new extension technology of the natural period for the 

middle multi-story buildings is needed. The paper comprises of a proposed folded cantilever 

shear structure with long natural periods in order to improve the seismic performance of the 

middle-multistory building which vibrates mainly as the shear vibration structure. At first, the 

proposed structure is designed within the framework of two main parts namely; fixed shear sub-

structure which is fixed on the ground and movable shear sub-structure which is vertically 

supported by roller bearings on the ground. By doing so, it is aimed that to increase the first 

natural period of the proposed structure in comparison with the first natural period of the 

ordinary multistory building which has the same number of stories of the proposed structure. In 

addition, the both top parts of the fixed and movable sub-structure are interconnected with each 

other by rigid connection beam. Then installation of damping devices process; additional 

damping devices connect the both fixed and movable shear sub-structure with each other 

horizontally on the basis of stories in order to acquire higher seismic performance under 

effecting loads. Firstly, the structural characteristics of the folded cantilever shear structure are 

explained on simple illustration of vibration model. Then the period and the shape of the natural 

vibration modes of the proposed structure are theoretically and numerically investigated by a real 

and complex eigenvalue analyses. Finally the seismic responses of the proposed structure and 

ordinary building are obtained under different earthquakes waves, so seismic performance of 

proposed folded cantilever shear structure is discussed. 

 

2. Vibration Model of the Folded Cantilever Shear Structure 

 

2.1. Outline of Vibration Model 

 

 Figure 1 illustrates the vibration model of the folded cantilever shear structure with n 

stories by simplifying, which is composed of the fixed shear sub-structure and the movable shear 

sub-structure. The fixed shear sub-structure consists of 2n columns, beam-1, beam-2⋯ and 

beam-n, and the movable shear sub-structure consists of 2n columns, beam-n+1, beam-n+2⋯ and 

beam-2n. By supporting the movable shear sub-structure vertically by means of roller bearings it 

is possible to make foundation free to move horizontally. The connection beam as beam-n rigidly 

connects the top of the fixed sub- structure and the top of movable sub-structures. The key idea 

in modeling the proposed structure to extend the natural period is to interconnect the tops of the 

fixed and movable sub-structure rigidly by the connection beam. Besides, the symbols which 

define parameters are given as follows; 𝑘𝑖  is the shear spring coefficient for the horizontally 

deformation performance of the story between beam-i and beam-i+1 (beam-0 is equal to the 

foundation), 𝑚𝑖 is the mass of beam-i and the columns which are connected with beam-i, and 𝑐𝑖  
is the viscous damping coefficient of the dashpot which connects beam-i and beam-i+1. The 

dashpots are used to simulate the ordinary structural damping of the fixed and the movable shear 

sub-structures. The symbol 𝑑𝑖 𝑖 = 0,2,⋯ , 𝑛 − 1  is the viscous damping coefficient of the 

additional viscous damper which horizontally connects beam-i and beam-2n-i. The additional 

viscous dampers are used to improve the damping performance of the folded cantilever shear 

structure. The symbol H is the total height of the vibration model which consist of n stories with 

h height. The vibration test model of the folded cantilever shear structure is only shaken in the x 

direction of Fig. 1. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.    Vibration model of the folded cantilever shear structure with n stories. 

 

2.2. The Equation of Motion for Seismic Vibration 

 

Characteristics of the free vibration of the folded cantilever shear structure is investigated 

by using the vibration model as shown in Figure 1. The equation of motion of this vibration 

model can be expressed by the follow, 

 

 M𝒖  +  𝐂 + 𝐃 𝐮 + 𝐊𝐮 = −sgn u 2n fde2n − z p  (1) 

 

, where 𝒖 ≡  𝑢1, 𝑢2,⋯ ,𝑢2𝑛  is the displacement vector of size 2n, 𝒖 ≡  𝑢 1 ,𝑢 2,⋯ ,𝑢 2𝑛  is the 

velocity vector of size 2n, 𝒖 ≡  𝑢 1,𝑢 2, ⋯ ,𝑢 2𝑛  is the acceleration vector of size 2n, 𝑒𝑖  is the unit 

vector of size 2n, of which the i-th element is equal to 1, and 𝑓𝑑  is the dynamic frictional force of 

the roller bearing system. The symbols 𝑢𝑖, 𝑢 𝑖  and 𝑢 𝑖  are the displacement, the velocity, and the 

acceleration of beam-i in the x direction, respectively. Then M is the diagonal mass matrix of 

size 2𝑛𝑥2𝑛, K is the tri-diagonal stiffness matrix of size 2𝑛𝑥2𝑛, C is the tri-diagonal structural 

damping matrix of size 2𝑛𝑥2𝑛, D is the additional damping matrix of size 2𝑛𝑥2𝑛. The matrices 

of M, K, C, and D are defined by the following formulas. 

 

 M ≡ diagonal  m1, m2 ,⋯ , m2n−1, m2n   (2) 
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 K≡

 
 
 
 
 
𝑘1 + 𝑘2 −𝑘2 0 ⋯ 0
−𝑘2 𝑘2 + 𝑘3 −𝑘2 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ −𝑘2𝑛−1 −𝑘2𝑛−1 + 𝑘2𝑛 −𝑘2𝑛

0 ⋯ 0 −𝑘2𝑛 𝑘2𝑛  
 
 
 
 

  (3) 

 

 C≡

 
 
 
 
 
𝑐1 + 𝑐2 −𝑐2 0 ⋯ 0
−𝑐2 𝑐2 + 𝑐3 −𝑐2 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ −𝑐2𝑛−1 −𝑐2𝑛−1 + 𝑐2𝑛 −𝑐2𝑛

0 ⋯ 0 −𝑐2𝑛 𝑐2𝑛  
 
 
 
 

  (4)  M ≡ diagonal  m1, m2 ,⋯ , m2n−1, m2n   (2) 

 

 D≡d0𝐞2n𝐞2n
T +   𝐞i ,𝐞2n−1  

di −di

−di di
  𝐞i ,𝐞2n−1 

Tn−1
i=1  (5)  M ≡ diagonal  m1, m2 ,⋯ , m2n−1, m2n   (2) 

 

3. Free Vibration Modes and Damping 

 

3.1. Un-damped Eigenvalue Problem 
 

If the dynamic frictional force of the roller bearing system, the damping forces of the 

dashpots, and the damping forces of the additional viscous dampers be neglected on the vibration 

model in Figure.1, an eigenvalue problem in order to estimate frequencies and shapes of the 

natural vibration modes of the vibration model can be described by the following homogeneous 

simultaneous equations, 
 

  𝑲 − 𝜔2𝑴 𝝋 = 0  (6) 

 

, where 𝜔 and 𝝋𝑇 ≡  ∅1, ∅2,⋯ , ∅2𝑛  are the natural frequency and the corresponding 

eigenvector of size 2n, respectively, then ∅𝑖 is the amplitude of beam-i in the x direction. The 

natural frequencies and the eigenvectors of Eq.(6) are usually calculated by using the QR 

method, but analytical solutions exist on the condition that 𝑚𝑖 = 𝑚  and 𝑘𝑖 = 𝑘  for all i. On this 

condition, the i-th natural frequency 𝜔𝑖  and the j-th element ∅𝑗 ,𝑖 of the eigenvector 𝜑𝑖  

corresponding to 𝜔𝑖  are expressed by the following formula, 

 

 𝜔i = 2𝜔 sin  
2𝑖−1

4𝑥2𝑛+2
𝜋 ,            1 ≤ 𝑖 ≤ 2𝑛 (7) 

 

 ∅j,i =
2

 2𝑥2𝑛+1
sin  

2𝑖−1

2𝑥2𝑛+1
𝑗𝜋 , 1 ≤ 𝑖 ≤ 2𝑛, 1 ≤ 𝑗 ≤ 2𝑛 (8) 

 

, where 𝜔 =  𝑘 𝑚   is called the typical story frequency and the eigenvector 𝜑𝑖  satisfies a 

normalized condition of  𝜑𝑖 = 1.  

 



 

3.2. Damped Eigenvalue Problem and Viscous Damping Ratio 
 

If the dynamic friction force of the roller bearing system be neglected on the vibration 

model in Figure.1, a complex eigenvalue problem to estimate viscous damping ratios of the 

damped vibration modes of the vibration model can be described by the following homogeneous 

simultaneous equations, 
 

  𝑲 +  𝜆 𝑪 + 𝑫 𝒖 + 𝜆𝟐𝑴 𝛹 = 0  (9) 
 

, where 𝜆 and 𝛹𝑇 ≡  𝛹1 ,𝛹2 ,⋯ ,𝛹2𝑛−1,⋯ ,𝛹2𝑛   are the complex eigenvalue and the complex 

eigenvector of size 2n corresponding to the complex eigenvalue, respectively, then 𝛹𝑖  is the 

complex amplitude at beam-i in the x direction. The complex eigenvalue and the complex 

eigenvector of Eq.(9) are usually calculated by using Foss’s method (K. A. FOSS, 1958). The 

real and imaginary parts of the j-th complex eigenvalue 𝜆𝑗  are denoted by 𝜆𝑅𝑗  and 𝜆𝐼𝑗 , 

respectively. Then the j-th natural damped frequency 𝜔𝑑𝑗  and the viscous damping ratio of 𝜁𝑗  

corresponding to the damped frequency 𝜔𝑑𝑗  can be expressed by the following formulas, 

respectively.  

 𝜔𝑑𝑗 =  𝜆𝑅𝑗
2 + 𝜆𝐼𝑗

2   (10) 

 

 𝜁𝑗 =
−𝜆𝑅𝑗

 𝜆𝑅𝑗
2 +𝜆𝐼𝑗

2  
 (11) 

 

The dynamic fictional force of the roller bearing system increases the damping of the 

proposed structure. A frictional damping by a dynamic frictional force is evaluated so that the 

total energy dissipated per cycle is the same as for the viscous damping vibration during a steady 

state of motion. As the result this frictional damping can be evaluated by the following formula, 
 

 𝜉𝑖 = 2𝑓d ×
 ∅2𝑛 ,𝑖 

𝜋𝜃 𝜔𝑖
×

 ∅𝑗 ,𝑖 

𝑎𝑗
  (12) 

 

, where 𝜉𝑖 is called the equivalent viscous damping ratio of the i-th natural vibration mode, 𝜃 and 

𝑎𝑗  are the frequency and the amplitude at beam-j during a steady state of motion, respectively. 

 

4. Elastic Dynamic Response Analysis 
 

4.1. Characteristics of Vibration Test Model 
 

Elastic dynamic response analysis is performed to proposed structure with 15 stories and 

50m height. Four different earthquake waves are simulated on vibration model which are known 

as; Elcentro earthquake (USA, 1940), Taft earthquake (USA, 1956), Hanhinohe  earthquake 

(Japan, 1956) and Miyagi earthquake (Japan, 2005). Hereby shear force, acceleration and relative 

displacement response diagrams are obtained in order to investigate the effect of changing 

earthquake waves on the dynamic response behavior. Characteristic parameters for both folded 

cantilever shear structure (FCSS) and ordinary cantilever shear structures (OCSS) vibration 

models are displayed in Table 1. 



 

Table 1.     Characteristic parameters of Folded cantilever shear structure (FCSS) and Ordinary 

cantilever shear structure (OCSS) 
 

Parameters 
Folded cantilever 

 shear structure (FCSS) 

Ordinary cantilever 

 shear structure (OCSS) 

Total height, H  50 m 50 m 

Number of stories, n 15 15 

Story height, h 3.333 m 3.333 m 

Story mass 

m1~m14=50,000kg 

m1~ m30=100,000kg m16~m30=50,000kg 

m15=100,000kg 

Total mass, m 1,600,000kg 1,500,000kg 

Shear spring coefficient  k1~k30=1.60×10
8 

Nm k1~k15=4.85×10
8 

Structural damping coefficient c1~c30=1.11×10
6 

Ns/m c1~c15=2.50×10
6 

Ns/m 

First structural damping ratio ζ1=1.0 % ζ1=2.0 % 

Additional damping coefficient d0~d6=0.25×10
6 
Ns/m - 

First additional damping ratio ⊿ζ1=34.0 % - 

Frictional coefficient μ=0.005 - 

Frictional force (N) f=41,650 N - 
 

3.2. Results and Discussions 
 

In this paper, TAFT earthquake wave records in Fig. 2, and response spectrums in Fig. 3, 

are given as a an illustration as follows among above mentioned earthquakes. These spectrums 

shows the top point results of the FCSS and OCSS. Acceleration and relative velocity spectrums 

of FCSS are varies in small range. Besides, relative displacements are stayed within 0.1 m. value 

range while OCSS exceeds 0.1 m. relative displacement on the top of the structure, in Fig. 3.     

 
 

 

 

 

 

 

 

 

Figure 2.    TAFT, earthquake ground acceleration record (max. acceleration 300gal) 
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Figure 3.    TAFT Earthquake, response spectrums for tops of the FCSS and OCSS. 
 

The following diagrams obtained for three condition of proposed structure such as; 

Folded cantilever shear structure (FCSS), Folded cantilever shear structure without damper, and 

Ordinary cantilever shear structure (OCSS). In terms of shear force, Fig.4, FCSS has acquired 

considerable amount of seismic performance in comparison with OCSS under each four different 

earthquake waves. While FCSS has around 1-2 MN shear force at the basement, OCSS shear 

force values at the basement extended from 4 to 18 MN. In addition, it is obvious that the 

additional dampers also increased the damping ratio and so seismic performance. As story 

number increases, high acceleration diagrams stands out for OCSS adversely of FCSS, Fig. 5. By 

means of movable sub-structure, movements at the basement enabled less relative displacement 

on the top of the FCSS, despite that the relative displacements on the top of the OCSS has higher 

values for 3 or 4 times. 
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Figure 4.    Shear force diagrams of FCSS, FCSS without damper and OCSS for TAFT, Elcentro, 

Miyagi and Hachinohe earthquakes.  
 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.    Acceleration response diagrams of FCSS, FCSS without damper and OCSS. 
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Figure 6.    Relative displacement diagrams of FCSS, FCSS without damper and OCSS 
 

Natural vibration modes of FCSS without damper system are obtained T1 = 2.30, T2 = 0.77 

and T3 = 0.46 respectively, shown in Figure 5, while the first period of OCSS is obtained T1 = 1.0. 

Besides natural periods for damped FCSS are T1 = 2.10, T2 = 0.80 and T3 = 0.48. Also complex 

eigenvalues are obtained λR1=-1.046, λR2=-2.825, λR3=-3.285 and λI1=±2.796, λI2=±7.377, 

λI3=±12.802. Finally  natural frequencies and damping ratio values of the vibration test model are 

ω1=11.526, ω2=33.472, ω3=56.99, ζ1=0.350, ζ2=0.358 and ζ3=0.249 respectively.      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.    Natural vibration modes of non-damping vibration system. 
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Earthquake response spectrums for TAFT-EW are also given in Figure 6. In this 

spectrums, bold line represents FCSS and normal line represents OCSS. Obtained results of 

damping ratios are 35% for FCSS, which consists of 34% first additional damping ratio and %1 

first structural damping ratio and 2% first structural damping ratio for OCSS.  During the first 

natural period of OCSS, T1 = 1.0 which is marked by red point, absolute acceleration is obtained 

around 4 m/s
2
 but FCSS, T2 = 2.1 which is marked by blue point, stayed around 1 m/s

2 
absolute 

acceleration. Besides relative displacement values of FCSS remained around 0.08m while OCSS 

values obtained around 0.1m.   
 

   
 

Figure 8.    TAFT Earthquake response spectrums. 

 

Conclusions 
 

 The proposed folded cantilever shear structure which is designed in order to increase 

damping performance and acquire highly seismic performance was gave acceptable results. Such 

as, natural vibration mode of folded cantilever shear structure was extended around two times 

longer than ordinary cantilever shear structure. In addition, damping constant increased 

approximately 16 times though coefficient of damper decrease ten times. In conclusion, it is seen 

that the folded cantilever shear structure with damping system has a great effect on middle 

multistory buildings to improve seismic performance.   
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