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ABSTRACT 
 
 This paper presents techniques for modeling triple pendulum isolation bearings 

subjected to three-dimensional (3-D) excitation. The behavior of the triple 
pendulum bearing has been described in the XY plane.  The XY plane includes 
the vertical degree freedom and one lateral degree of freedom. However, the 
bearing behavior is considerably more complex in three dimensions due to the 
interaction of the four sliding surfaces and their respective restraints. Although 
shake table tests have shown the bearings to have good performance under three-
component earthquake excitations, it is important develop a robust analytical 
model capable of explicitly capturing the 3-D behavior of each internal 
component. A non-linear, kinematic model is used in the analysis of the bearing 
three-component motion. Experiments were conducted using the shake table at 
the University of California, Berkeley as part of an effort to characterize the 3-D 
behavior. A comparison between the experimental data and the corresponding 
results of the kinematic model shows favorable agreement.  

  
  

Introduction 
 

A triple friction pendulum (TFP) bearing consists of four sliding surfaces acting in series. 
The inner two surfaces are identical, resulting in three distinct pendulum mechanisms. As the 
bearing displacement increases, the surfaces on which sliding occurs change, resulting in 
incremental softening of behavior. As the bearing approaches its ultimate capacity, the 
displacement restraints of the sliders are reached and the bearing again changes the surfaces on 
which it slides. This causes incremental hardening behavior until the bearing reaches its ultimate 
displacement capacity. Because of this behavior, TFP bearings are ideal for performance-based 
design (Morgan and Mahin 2008).  However, there are still some challenges in modeling in the 
bearing behavior. 

 
Although the 2D (vertical degree freedom and one lateral degree of freedom) behavior of 

the TFP bearing has been documented (Fenz and Constantinou 2008(a), Morgan and Mahin 
2008), the interaction between the four internal slider interfaces makes the 3D behavior far more 
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complicated. The 2D model is developed by taking the equilibrium at each stage of motion in 
order to find the force-deformation relationship for that stage. This results in piece-wise linear 
behavior that requires numerous rules for loading and unloading, which make modeling with this 
approach very difficult. As a result, models utilizing a series of gap-hook and spring elements 
were developed to match the 2D piece-wise behavior of the bearing (Fenz and Constantinou 
2008(b), Morgan 2007). The spring model cannot track the slider displacements accurately. 
Current 3D models implement the series model in both X and Y directions. They do not exhibit 
circular yield surfaces or slider-restraint surfaces. No analytical models previously exist that can 
track individual slider displacements or slider-restrainer interactions in 3D.  

 
In order to accommodate any 3D motion pattern it is necessary to develop a general 

bearing model. To do this, a kinematic model based on the constitutive and compatibility 
relationships of the bearing sliding surfaces is used. Due to the non-linearity of the bearing 
behavior, these relationships are updated at each displacement increment. Coupled plasticity with 
a circular yield surfaces as well as circular restrainer surfaces are also necessary to properly 
describe the bearing motion.  Comparison with experimental test data is necessary for the 
validation of the model. 

 
Kinematic Model 

 
 The bearing kinematic model is dependent on both individual slider behaviors and the 
geometric relationships of the bearing parts. At each displacement increment, the tangent 
stiffness of the sliding surfaces is calculated, and the transformation matrix from local slider 
displacements to the global X and Y displacements is updated. The local tangent stiffness and 
transformation matrices are then used to find the global tangent stiffness matrix. The change in 
force in the X and Y directions is then found by multiplying the global tangent stiffness vector by 
the displacement increment.  
 
 The vertical deformation of the bearing is calculated from the displacements of the 
bearing sliders based on their geometry. The internal components of the bearing are each 
modeled as axially rigid; hence the elastic vertical stiffness is ignored. 

 
Bearing Geometry 
 

Of the four sliding surfaces of the TFP bearing, three can be distinct. Currently 
implemented TFP bearings have identical geometry for top and bottom inner surfaces.  Each 
distinct sliding surface of the TFP bearing has its own friction coefficient µ, radius R and inner 
and outer diameter, ID and OD.  The effective pendulum length, L, for each surface is taken as 
L=R-h. Where h is the distance from the sliding surface to the center of the bearing. A cross-
sectional diagram of a TFP bearing with its geometry is shown in Fig. 1.  

 
Sliding Surface Constitutive Relationship 
  

Each sliding surface has the same general behavior shown in Fig 2., varying only in its 
yield force, post yield stiffness and displacement limit. Theoretically, motion on a friction 
surface initiates at an infinitesimally small displacement. However, an infinite stiffness presents 



a problem in matrix operations, so the deformation displacement of 0.01in at yield is typically 
used (Sheller and Constantinou 1999). The initial stiffness, µ divided by 0.01in, is referred to as 
k0. The yield force of the slider is dependent on its friction coefficient and the normal force on 
the slider.  The normalized yield force, the yield force divided by the normal load, is simply the 
slider friction coefficient. After yield, the slider travels with a stiffness inversely proportional to 
its effective pendulum length. This motion continues until the slider reaches its restrainer 
displacement. The stiffness after the restrainer displacement is reached is theoretically infinite. 
To model this, k0 is again used for the contact stiffness to ensure numerical stability. 

 

 
Figure 1. Geometry of TFP bearings. 

 

 
Figure 2. Individual slider behavior. 
 
Bi-Bidirectional Effects 
 
 The force-deformation behavior of the sliders is best broken up into three parts: the 
friction hystereses, the elastic force due to the bearing radius and the contact force. The elastic 
force contributes a stiffness of 1/L at all displacements. The stiffness from the contact force is 
conditionally applied only when the restrainer is reached. The hysteretic friction force is applied 
in the direction of instantaneous velocity of the slider. At each displacement increment the 
direction of the friction force must be updated. This is described by a bi-directional plasticity 
model and implemented using a return-mapping algorithm (Simo and Hughes 2000). The 



methods described by Mosqueda et al. (2004) for modeling the bi-directional plasticity of a 
single friction pendulum bearing are implemented for each sliding surface of the TFP bearing. 
 

The benefits of using Cartesian coordinates when mapping slider displacements is the 
ability to use a previously defined return-mapping algorithm to describe the plasticity of the 
bearing. However, this choice complicates the computation of stiffness due to the slider radius. 
At each displacement step i the effective radius of the slider in both the X and Y direction must 
be recalculated using the following equations  
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Where uX and uY are the local slider displacements. 
 
Restrainer Contact 
 
 The restrainer surface of each slider has a great effect on the bearing behavior. In order to 
allow the slider to travel tangentially to the restrainer surface, X and Y displacements are checked 
separately for the contact condition. Similarly to the effective radius, the slider restrainer surface 
must be updated with each new set of local X and Y displacements. The restrainer distances, uRY  
and uRX , are found from the equations 
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If uX or uY  exceeds uRY  or uRX , respectively, the bearing has contacted the restrainer and the 
stiffness of the slider in that direction becomes the same as the initial slider stiffness k0. 
 
Geometric Compatibility Relationship 
 

This model assumes there are rigid floor slabs that resist bending both above and below 
the isolation level. This assumption restricts the global rotational degrees of freedom of the 
bearing to zero. The remaining global degrees of freedom are translation in the X and Y direction. 
From geometry and the assumption that the top and bottom of the bearing remains parallel it can 
be found that the displacement in the X and Y directions of the bearing are equal to the 
summation of the local displacements on each slider j.   
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The local slider rotations θ, shown in Fig. 3, are defined as the angle made from the radii that 
extend from two bearings pieces that share the same sliding interfaces Furthermore, from the 
zero rotation assumption, the sum of the local slider rotations θ in the X and Y directions both 
sum to zero. 
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Figure 3. Local slider rotations with the assumption that the outer surfaces of the bearing remain 

parallel. 
 

The local rotations are directly related to the local displacements by the effective radii. 
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Equations 3, 4, and 5 are used to develop a transformation matrix between the local 
displacements and the global displacements. 
 

Comparison with Experimental Data 
 
Rigid Block Tests 
 

Characterization tests were run in order to further understand the three-dimensional 
behavior of the triple friction pendulum bearing. The test set-up, modeled after similar tests done 
for single friction pendulum bearings (Mosqueda et al. 20004), is shown in Fig. 4. A 68 kip rigid 
block mass was supported by four TFP bearings on the UC Berkeley shake table. The rigid block 
consisted of a frame loaded with four concrete bocks. The rigid block was braced with HSS 



struts to four reaction blocks rigidly connected off of the shake table platform. The struts kept the 
frame stationary while the table was moved below, resulting in bi-directional displacement-
controlled testing.  The displacement-controlled motions included sine waves, circles, squares 
and figure eights.  To investigate the behavior of multiple sliding surfaces, the signals were run 
with incrementally increasing amplitudes from 0.2 in to 5.0 in. The orbits of these tests can be 
seen in Fig. 5. All orbit tests were conducted at a velocity of approximately 6in/s. A five-
component load cell was located under each bearing to measure and record axial, shear and 
moment response. 

 
The geometry and friction coefficients of the TFP bearings used in this study are given in 

Table 1. These bearings, typical of TFP bearings in use, had the same geometry for the outer two 
sliding surfaces. The effective radii of the inner sliders and outer sliders were 2.5 in and 38 in 
respectively. The displacement capacity of the bearings was ± 8.2 in. The friction coefficients of 
TFP bearings cannot be determined without experimental testing. They are determined from a 
series of force deformation loops at increasing displacement increments. 

 
 The force-deformation curves from both the experimental data and the analytical model 
for the X and Y direction for all four displacement-orbits are shown in Figs. 6 through 9. The 
model exhibits good matching behavior for all of the displacement-based motions. Slight offsets 
are observed in analytical data for the square and figure-eight orbits. This is due to restrainer 
contact during the orbits. In general, using smaller displacement increments will in decrease this 
effect. 
 

 
Figure 4.    Rigid block experimental set-up at the UC Berkeley PEER Earthquake Simulator 

Laboratory. 



Table 1. Geometry and friction of the TFP bearings used in the experimental characterization. 
 

 Inner slider Outer slider bottom Outer slider top 
Radius (in) 3.0 39.0 39.0 
Height (in) 0.5 1.0 1.0 
Outer diameter (in) 2.5 10.2 10.2 
Inner diameter (in) 1.5 3.0 3.0 
Friction coefficient 0.036 0.118 0.137 

 

 
Figure 5. Displacement-controlled orbits used for bearing characterization including: sine waves, 

circles, squares and figure eights. 
 

 
Figure 6. Experimental and analytical hystereses for the sine wave displacement orbit. 



 

 
Figure 7. Experimental and analytical hystereses for the circular displacement orbit. 
 

 
Figure 8. Experimental and analytical hystereses for the square displacement orbit. 



 
Figure 9. Experimental and analytical hystereses for the figure eight displacement orbit. 
 
Future Considerations 
 
 Velocity, pressure and temperature all affect the friction coefficients of the four sliding 
layers. Changes in friction coefficients alter the force-displacement relationship of the TFP 
bearing. If the friction coefficients decrease, the displacement in the isolation layer of the building 
increases. If the friction coefficients increase, the superstructure will have higher lateral loads and 
damping. Thus, these effects are important to understand in order to estimate realistic building 
performance under earthquake loads. Effects on friction coefficient due to effects of velocity will 
be added to the model. A model for both this effect has been previously developed (Constantinou 
et al. 1990). Friction on each surface must be modeled independently as they vary in friction 
characteristics, and velocity.  
 

Another aspect of TFP behavior to be investigated is the rotation about the vertical axis 
of the sliders as they move along restrainer surfaces. This motion increases the energy dissipated 
by the bearing. However, it remains to be seen if this has a significant effect on predicted 
behavior. 
 

Conclusions 
 
 A 3D non-rotational model has been developed that accurately describes the behavior of 
TFP bearings. The model incorporates coupled plasticity and circular yield and restrainer 
surfaces.  Additionally the effective pendulum length of the bearing is computed at each 
displacement. The model can accurately track the local displacements on each sliding surface. At 



each displacement increment both the local and global forces and tangent stiffness matrices are 
calculated, making the model suitable for most structural modeling applications. 
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