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ABSTRACT

A general method is developed for system fragility analysis based on mechan-
ical models, a Bayesian formulation for model calibration, and seismic site
characterization by actual and simulated ground motion accelerations. Sim-
ple examples illustrate the implementation of the proposed methodology for
model calibration and fragility analysis. The extension of the method to real-
istic mechanical models for nonstructural systems is discussed using gypsum
wall mechanical models.

Introduction

A key challenge in performance-based design is the development of validated tools
and guidelines to assist with understanding and predicting the seismic response of nonstruc-
tural components and systems. Subsystems of particular interest, and the focus of a NEES
research grand challenge project, include the ceiling-piping-partition and the gypsum parti-
tion walls nonstructural systems. These subsystems are highly interconnected, and account
for a significant fraction of all hazards and losses associated with NCS seismic performance.

In this paper, we present an update of the simulation efforts of the NEES grand
challenge team, with particular focus on model validation against emerging partition wall
experiments and development of a fragility framework. The former efforts use simple me-
chanical models implemented in OpenSees, while the later adopts a Bayesian analysis to
combine various sources of information, including for example, tests recording system re-
sponses and damage to specified loading protocols, field damage data if available, expert
opinions, and general knowledge on material properties, system geometry, and/or boundary
conditions.
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The proposed methods for fragility analysis involves three steps. In the first step, a
functional form is selected for a mechanical model of the system under consideration and
the parameters of this form are estimated. The selected model has to (1) be consistent with
the physics, for example, the functional form of a mechanical model for gypsum walls has
to degrade under cyclic loading, and (2) depend on a relatively small number of parameters
that can be estimated reliably from the available information. In the second step, damage
states are defined and relationships are developed between damage states and various sys-
tem responses. Both the definition of damage states and the development of relationships
relating responses to damage states are based on experimental observations and heuristic
arguments. In the third step, the mechanical model and the damage state-model response
relationship are used to construct fragility curves to arbitrary hazards, that generally differ
from the loading protocols used in experiments. The proposed method provides a rational
framework for extrapolating system performance beyond the available experimental results.
The methodology is illustrated with a system examples.

The first part of the paper presents the proposed Bayesian method for calibrating me-
chanical models to data. An elementary mechanical model is used as a vehicle for illustrate
the proposed methodology. The application of the Bayesian calibration method to calibrate
a gypsum wall model is also discussed. The second part outlines a Bayesian framework for
constructing system fragilities based on data and mechanical models.

Mechanical models

Mechanical models of increasing complexity are used to characterize the behavior
of gypsum partition walls, for example, linear and nonlinear springs and finite element.
Irrespective of their complexity, the models define mappings a(t) 7→ r(t) from seismic ground
accelerations a(t) to system responses r(t) depending on vectors θ = (θ1, . . . , θq) of uncertain
parameters.

Our objective is to calibrate postulated models to available information, that is, find
values of θ such that model outputs be consistent with laboratory experiments and/or any
other type of information that may be available. Suppose that n nominally identical gyp-
sum partition walls have been subjected in laboratory to a seismic ground acceleration a(t)
and that (rmax,1, . . . , rmax,n) are the largest responses of these specimens. It is assumed that
there is a one-to-one correspondence between (rmax,1, . . . , rmax,n) and wall damage states
(d1, . . . , dn), so that response levels can be related simply to damage; the assumption is
needed for fragility analysis. Let r(t; θ) be the response at time t of a gypsum wall mechan-
ical model under a(t), and denote by rmax(θ) = maxt{r(t; θ)} the corresponding maximum
response.

We consider two methods for estimating the uncertain parameters of a mechanical
model. The simplest method is to set θ = θ̂, where the estimate θ̂ is that value of θ that
minimizes the discrepancy between observed and calculated responses, for example, θ̂ may be

required to minimize the mean square error
∑n

i=1

(
rmax,i−rmax(θ)

)2
. An alternative method is

to view the uncertain vector of parameters θ as a random variable and determine its posterior
probability law from both prior information and data within a Bayesian framework. This
method is less simple but has the advantage that it accounts for all available information and
provides not only an estimate θ̂ but also a measure of the uncertainty in this estimate. We
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use a simple example to illustrate the methodology for model calibration within a Bayesian
framework.

Consider a rod with strength R following a shifted exponential distribution, that
is, the density and distribution functions of R are fR(x) = λ exp(−λ (x − α)) 1(x ≥ α)
and F (x) =

[
1 − exp(−λ (x − α))

]
1(x ≥ α), respectively, where α > 0 is known, λ >

0 is uncertain, and 1(·) denotes the indicator function (1(A) = 1 if statement A is true
and 1(A) = 0 if A is false). We note that the functional form of the distribution of R is
determined by a particular mechanical model for rod strength that in our illustration has a
single uncertain parameter, that is, the vector of uncertain parameters θ reduces to a single
parameter denoted by λ.

Suppose that n nominally identical rods have been tested at a load of magnitude
ξ > α and n1(ξ) out of n rods failed under this load. The strengths (R1, . . . Rn) of these
rods are independent copies of R. Without loss of generality we assume that the first n1(ξ)
rods failed, that is, Ri < ξ for i = 1, . . . , n1(ξ), and the last n − n1(ξ) rods survived, that
is, Ri ≥ ξ for i = n1(ξ) + 1, . . . , n. The latter type of data is referred to as censored data.
Since α is known it is convenient to shift the origin to this constant, so that the density and
distribution functions of R become

fR(x̃) = λ e−λ x̃ 1(x̃ ≥ 0) and

FR(x̃) =
[
1− e−λ x̃

]
1(x̃ ≥ 0), (1)

where x̃ = x−α. In this new coordinate, the magnitude of the applied load is ξ̃ = ξ−α > 0
and the failure loads for the first n1(ξ) rods are r̃i = ri − α > 0, i = 1, . . . , n1(ξ), where
ri < ξ denote the failure loads of the first n1(ξ) specimens. Suppose the prior information
on λ can be quantified by a Gamma distribution with parameters (s, µ), that is,

f ′(λ) ∝ λs−1 e−µ λ, λ > 0. (2)

The likelihood function of λ corresponding to n1(ξ) failure loads and n−n1(ξ) censored data
is

`(λ | data) ∝
n1(ξ)∏
i=1

(
λ e−λ r̃i

)(
e−λ ξ̃

)n−n1(ξ)

∝ λn1(ξ) exp

[
− λ

( n1(ξ)∑
i=1

r̃i + ξ̃
(
n− n1(ξ)

))]
(3)

since the strength of the last n− n1(ξ) rods is not known. We only know that the strength
of these rods is larger than ξ, and the probability of this event is 1 − FR(ξ̃) = exp(−λ ξ̃).
The posterior density of λ can be obtained by multiplying the prior density in Eq. 2 and the
likelihood function in Eq. 3, and has the expression

f ′′(λ) ∝ λsp(ξ) e−µp(ξ) λ, λ > 0, (4)

where

sp(ξ) = s + n1(ξ)

µp(ξ) = µ +

n1(ξ)∑
i=1

r̃i + ξ̃
(
n− n1(ξ)

)
. (5)
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We note that the posterior distribution of λ is a Gamma distribution with parameters(
sp(ξ), µp(ξ)

)
, that is, a distribution of the same type as the prior. If the prior and posterior

distributions are of the same type, the prior is said to be a conjugate prior.
The results in the following two figures are for s = 2, µ = 1, n = 10, α = 1. Figure 1

shows the prior and posterior densities of λ in Eqs. 2 and 4 for (n1(ξ) = 3, ξ = 2) and

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

λ

f
′
(λ

)
a
n
d

f
′
′
(λ

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

λ
f

′
(λ

)
a
n
d

f
′
′
(λ

)

Figure 1: Prior and posterior densities f ′(λ) (dotted lines) and f ′′(λ) (solid lines) for (n1(ξ) =
3, ξ = 2) (left panel) and (n1(ξ) = 10, ξ = 10) (right panel)

(n1(ξ) = 10, ξ = 10) in the left and right panels, respectively. The failure loads of the
n1(ξ) = 3 specimens under ξ = 2 are assumed to be ri = 1.1, 1.5, and 1.9. The failure loads
of the n1(ξ) = 10 specimens under ξ = 10 are ri = 1.1, 1.5, 1.9, 2.7, 3.9, 5.7, 6.7, 7.1, 8.9, and
9.5. The prior and posterior densities are drawn with dotted and solid lines, respectively.
Since it is assumed that the prior information is rather weak, the parameters (s, µ) have
been selected such that the prior density f ′ assigns similar probabilities to most values of λ.
Accordingly, the change from the prior to the posterior density is essentially caused by data.

The posterior distributions f ′′(λ) can be used to obtain a point estimate λ̂ of λ, for
example, the mean or the mode of f ′′(λ), and determine the uncertainty in this estimate,
for example, the uncertainty in the point estimate set equal to the mean of f ′′(λ) is the
variance of this density. We also note that f ′′(λ) provides a full characterization of our state
of knowledge regarding the uncertain parameter λ.

The calibration approach in Eqs. 1 to 5 extends directly to mechanical models de-
scribing the behavior of nonstructural systems. For example, mechanical models for gypsum
walls are available in OpenSees, an open-source simulation and modeling software platform
developed by the Pacific Earthquake Engineering Research (PEER) Center. Some of these
models depend on up to 24 parameters, that is, the dimension of vector θ is 24, that need
to be calibrated to data. Their ability of describing complex time histories is remarkable,
as illustrated in Fig. 2 showing experimental and model generated force displacement time
histories.
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Figure 2: Force displacement response for gypsum walls

Fragility analysis

We construct fragility curves under two assumptions. First, only experimental results
are used to obtain fragilities. Second, both experimental evidence and mathematical models
are employed to calculate fragilities.

The probability Pd(x) that a structural component or system subjected to a seismic
load of intensity x reaches a damage state d is referred to as the component or system fragility
for load intensity x and damage state d. The functions Pd(x) of x indexed by d are called
fragility curves. This definition of fragility can be generalized by expressing fragilities as
functions of other indicators of seismic hazard, for example, earthquake moment magnitude
and site-to-source distance (Kafali and Grigoriu 2007).

Fragility curves can be estimated from field and/or laboratory data or can be derived
analytically. We discuss two methods for constructing fragility curves. The first method pos-
tulates a functional for fragility Pd(x; θ) depending on some unknown parameters θ, and is
used in ATC-58. The second method, proposed in this study, develops a mechanical model
for the structural system under consideration and uses this model to calculate fragilities.
The proposed formulation (1) has the potential of reducing the uncertainty in the resulting
fragility curves and (2) provides a framework for quantifying the uncertainty in these curves.

ATC-58 fragility

Fragilities proposed in ATC-58 are derived from laboratory test data, earthquake experience
data, and/or other sources. Simplicity is the main advantage of ATC-58 fragilities. Since
these fragilities can be calculated efficiently, they are ideal for codified design.

The derivation of the ATC-58 fragilities is based on two assumptions. First, the
probability Pd(x), that is, the probability that a system enters a damage state d under a
load of intensity x, is assumed to be a lognormal distribution if viewed as a function of x for
any damage state d. Second, the available information is assumed to be sufficient to estimate
accurately the parameters of the lognormal model used to define Pd(x). Developments in
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ATC-58 do not use mechanical models to calculate fragilities.
Both assumptions used for fragility analysis in ATC-58 are questionable. The selection

of the lognormal model seems to be somewhat arbitrary. The calibration of the lognormal
fragility model to data without accounting for the statistical uncertainty in the estimated
parameters of this model may result in unsatisfactory predications of system performance.

NEES fragility

Limitations of current methods for constructing fragilities motivate our effort to develop
alternative techniques for fragility analysis. Since records on a system performance under
actual and/or laboratory generated seismic actions are used to construct fragilities, the
resulting fragilities cannot be used to assess the seismic performance of the system under
loads other than those used in testing. Also, the hypothesis that fragility curves follow
lognormal distributions can be too restrictive.

To overcome limitations of current methods for fragility analysis, we develop a Bayesian
framework for constructing fragilities, that can account for damage data and information
other than data. In the proposed framework, the construction of fragility curves involves the
following three steps.

– Step 1. Mechanical models. Develop mechanical models of increasing complexity for
gypsum partition walls or any other structural systems. The mechanical models have
specified functional form but depend on vectors θ = (θ1, . . . , θq) of uncertain parame-
ters.

– Step 2. Model calibration. Use available field and/or laboratory data to calibrate the
mechanical models developed in Step 1, that is, to find estimates θ̂ or posterior densities
of θ.

– Step 3. Fragility analysis. Use the calibrated models to calculate fragility curves,
that is, probabilities that a structural system enters a specified damage state under an
arbitrary seismic action.

The resulting fragilities are satisfactory if the mechanical model used in analysis can
capture essential features of a system behavior, there is sufficient information to accurately
estimate the model parameters, and the relationship between system response and damage
is well understood.

The probability of failure of a rod under a load of intensity x is P (R ≤ x | λ) =
exp(−λ (x−α)), conditional on the value of λ. The posterior fragility can be obtained from
this relationship weighted with the posterior density f ′′(λ) of λ, that is,

P (R ≤ x) = 1(x ≥ 0)

∫ ∞

0

P (R ≤ x | λ) f ′′(λ) dλ

=

[
1− (

1 + (x− α)/µp(ξ)
)−sp(ξ)

]
1(x ≥ α). (6)

The fragility P (R ≤ x) is 0 for x = α and approaches 1 as x → ∞. The plots in the
left and right panels of Fig. 3 are posterior fragilities corresponding to the prior/posterior
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Figure 3: Posterior fragilities P (R ≤ x) for the prior/postorior densities in Fig. 1

densities of λ in the corresponding panels of Fig. 1. The additional information provided by
the failure loads of the last 7 specimens used to construct the posterior density in the right
panel of Fig. 1 reduces the posterior fragility, as can be seen by comparing the posterior
fragilities in the two panels of Fig. 3. We also note that confidence intervals on fragility can
be constructed simply. For example, the central 90% confidence interval on P (R ≤ x | λ) is
[(F ′′

h )−1(0.05), (F ′′
h )−1(0.95)], where F ′′

h denotes the distribution of P (R ≤ x | λ) viewed as a
function of λ, a random variable with density f ′′.

Future work

It is common to construct fragilities by (1) selecting a collection of seismic ground
accelerations {ak(t), k = 1, . . . , n} recorded at the site of interest, (2) scaling the records so
that their scaled versions {ãk(t), k = 1, . . . , n} have the same maximum ground acceleration,
relevant spectral ordinate, or other ground motion intensity metric, and (3) calculating
system damage probabilities, that is, system fragilities, as a function of a scale parameter ξ
with respect to the accelerations {ξ ãk(t), k = 1, . . . , n}.

There are two potential problems with this approach. First, scaling is inconsistent
with probability theory in the sense that it changes in a rather arbitrary manned the prob-
ability law of the underlying random process describing site seismicity. Second, scaling does
not change the frequency content of the records so that resulting fragilities are conditional
on ground motions with a rather limited frequency content, that may or may not provide an
adequate test for the seismic performance of a particular system.

We consider a hybrid method for constructing system fragilities. The method aug-
ments the collection of seismic ground accelerations {ak(t), k = 1, . . . , n} recorded at a
site with site specific simulated ground accelerations generated from a seismological model
proposed in (Papageorgiou 1988). It is anticipated that the method will provide useful in-
formation on the seismic performance of structural and nonstructural systems since it will
test seismic performance under ground motions with a broad range of moment magnitude
and frequency content.
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Conclusion

A general method has been proposed for constructing fragilities for structural and
nonstructural systems subject to earthquakes. The method is based on (1) mechanical
models describing system behavior under seismic loads, (2) algorithms for calibrating model
parameters to data and prior information developed within the Bayesian framework, and
(3) descriptions of site seismicity based on actual and simulated ground motion accelerations.
The Bayesian formulation delivers fragility estimates and measures of the uncertainty in these
estimates. Calibrated mechanical models provide a rational approach for predicting system
behavior under loading conditions different from those use in laboratory experiments or
observed in the field

Simple examples have been used to illustrate the implementation of the proposed
methodology for model calibration and fragility analysis. The extension of the method to
realistic mechanical models for nonstructural systems has been discussed using a mechanical
model for gypsum walls. Future research directions have also been summarized.
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