
 
 
 
POLE ASSIGNMENT USING PSO-SA HYBRID ALGORITHM FOR SLIDING MODE 
CONTROL ON ISOLATED BRIDGES WITH COLUMNS OF IRREGULAR HEIGHT 

 
 

P. C. Chen1, T. Y. Lee2 and D. S. Juang3 
 
 

ABSTRACT 
 
 Bridge structures may be complicated due to various terrain, route alignment, 

ramps, interchanges, etc. If columns of a bridge are of irregular height but of 
identical cross section, the induced seismic forces and responses of each column 
are varied because of the different stiffness of each column. The isolation system 
has been extensively adopted in bridges to mitigate the induced seismic force. 
However, the deck displacements of isolated bridges maybe become excessively 
large under extreme ground motions. Structural control has been shown to 
effectively mitigate the seismic responses of isolated bridges in the past studies. 
So far there is no study on the structural control of isolated bridges with columns 
of irregular height. This research is aimed to study the effectiveness of the sliding 
mode control for the isolated bridge with the columns of irregular height. It is 
noted that the sliding surface of the sliding mode control dominates the dynamic 
behavior of structures. A four-span isolated bridge with columns of irregular 
height, which is designed based on the balancing-member-stiffness method, is 
analyzed in this study. Since the target bridge has to be idealized as at least a 
four-degree-of-freedom system for sufficiently understanding the dynamic 
behavior, it is needed to determine at least five poles of the sliding surface. 
Although it is possible to find out an optimal sliding surface by parametric study, 
the work is tedious and troublesome. The PSO-SA hybrid searching algorithm is 
adopted to explore the optimum sliding surface of the sliding mode control in this 
study. Through numerical simulation, the results demonstrate that the sliding 
mode control with the optimum sliding surface obtained by using the PSO-SA 
hybrid search method can more effectively decrease the seismic responses of the 
target bridge than by using the parametric study method.  

  
Introduction 

 
 The deck displacements of isolated bridges may become excessively large under extreme 
ground motions. Structural control has been shown to effectively mitigate the seismic responses of 
isolated bridges in the past studies (Kawashima and Ruangrassamee 2001, Lee and Kawashima 
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2006, 2007). Lee (2005) presented an alternative design method of sliding mode control. The 
numerical simulation results have indicated that the sliding mode control algorithm presents 
better control performance than LQR control algorithm in active control of typical isolated 
bridges which exhibit nonlinear behavior under near-field ground motions. However, there is no 
study on the structural control of isolated bridges with columns of irregular height so far. Bridge 
structures may be complicated due to various terrain, route alignment, ramps, interchanges, etc. If 
columns of a bridge are of irregular height but of identical cross section, the induced seismic 
forces and responses of each column are varied because of the different stiffness of each column.  

A four-span isolated bridge with columns of irregular height, which is designed based on 
the balancing-member-stiffness method, is analyzed in this study. The sliding mode control is 
applied to this target bridge for mitigating the deck displacement. The sliding surface which 
dominates the performance of the sliding mode control can be determined by the LQR method or 
the pole assignment method. However, since the target bridge has to be idealized as at least a four-
degree-of-freedom system for sufficiently understanding the dynamic behavior, it is needed to 
determine several parameters of the sliding surface.  

Particle swarm optimization (PSO) is an evolutionary computation technology based on 
simulation of simplified social model, such as bird flocking (Eberhart 1995 and Kennedy 1995). 
Since PSO is implemented easily and efficiently, it has been applied to a number of fields (Kowk 
et. al 2006 and Leung et. al 2008). However PSO probably converge to a local minimum.  Juang 
and Chuang (2007) proposed a hybrid searching algorithm combining particle swarm optimization 
and simulated annealing (PSO-SA) to explore optimal solutions for avoiding premature 
convergence. Simulated annealing (SA) is a local searching algorithm (Kirkpatrick et. al 1983). It 
can not only accept a near local optimum but also accept a worse solution, so it has the possibility 
to leave away the local optimum where the solution is entrapped. The performance and reliability 
can be improved by using a jumping function. In this study, the PSO-SA hybrid searching 
algorithm is adopted to explore the optimum sliding surface of the sliding mode control. 

Through numerical simulation, the results demonstrate that the sliding mode control with 
the optimum sliding surface obtained by using the PSO-SA hybrid searching algorithm can more 
effectively decrease the seismic responses of the target bridge than by using the parametric study 
method. Also the PSO-SA hybrid searching algorithm is more suitable for practical application. 
 

Target Bridge and Analytical Model 
 

A four-span isolated bridge with three columns of irregular height and two abutments 
(Priestley et al. 1996) as shown in Fig. 1 is studied in this research. The superstructure consists 
of prestressed concrete box girders and reinforced concrete decks with a total length of 4@50 
m=200 m. It is supported by three reinforced concrete columns having identical cross sections. 
Three columns are 14 m, 7m and 21 m, respectively, in length. The isolators on the top of the 
columns are designed by using the balancing-member-stiffness method. The balancing-member-
stiffness means that the total stiffness of the column and the isolator at each pier is identical. 
Control devices are installed between the deck and the column to exert control forces. Assume 
that the deck of the isolated bridge is rigid in the longitudinal direction. The bridge can be 
idealized as a four degree-of-freedom lump-mass system shown in Fig. 2. The masses of the 
deck and three columns are 3058 T, 74 T, 34 T and 111 T, respectively. In the past study, 
isolated bridges to earthquake excitation have been shown to exhibit nonlinear behavior even 
under control (Lee and Kawashima 2006, 2007). Thus, the isolators and columns are both 



assumed to be perfect elastic-plastic. The yielding displacement and stiffness of columns and 
isolators are shown in Table 1. The damping ratios of the first two modes are assumed to be 5%.  

Considering that the isolated bridge is subjected to one-dimensional ground acceleration 
gx&& , the equations of motion are given by 

 
 ( ) ( ) [ ( )] ( ) ( )gt t t t x t+ + = +Mx Cx F x HU η&& & &&  (1) 
 
in which [ ]1 2 3( ) T

c c c dt x x x x=x  is a vector with relative displacements of the columns 
and deck; M  and C  are  mass and damping matrices, respectively; [ ( )]tF x  is a vector denoting 
the nonlinear restoring force as a function of ( )tx ; H and η are the location matrices of the 
control devices and ground excitation, respectively. 
 

Control algorithm 
 
 Based on a state space formulation, the equations of motion by Eq. 1 can be written as 
follows: 
 
 ( ) [ ( )] ( ) ( )t t t t= + +Z g Z BU E&  (2) 
 
where [ ]( ) ( ) ( ) Tt t t=Z x x&  is a state vector; [ ]( )tg Z , B  and ( )tE  are defined as  
 

 
 
 
 
 
 
 

Figure 1. A four-span continuous isolated bridge with columns of irregular height 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Analytical model 

Table 1. The stiffnesses and yield displacements of 
the isolators and columns 

 
Stiffness (kN/m) Yield displacement(m) 

(1)
bk  16100 (1)

ybx 0.1304 
(2)

bk  11500 (2)
ybx 0.1826 
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ycx 0.0814 

(2)
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The control force in sliding mode control is to drive the response trajectory to reach the 

designated sliding surface and then to maintain it there. It is noted that the sliding surface 
defined by =S 0  must be stable. Define the sliding surface as a linear function of state vector Z  
such that 
 
 ( )t=S PZ  (4) 
 

The control force can be designed to satisfy a reaching condition or to maintain the 
response on the sliding surface based on Lyapunov stability criteria 
 
 0T ≤S S&  (5) 
 

An alternate design method of sliding mode control underlying Eq. (5) proposed by Lee 
(2005) is used herein. An estimated recursive controller is written as 
 
 1( ) ( ) ( ) ( ) ( )Tt t t tψ −+ = − −U U PB PZ δλ&  (6) 
 
where ψ  is sampling time; T=λ S PB ; δ  is a ( r r× ) diagonal positive-definite matrix with 
diagonal entries 1 2, ,..., rδ δ δ . When an earthquake excitation is strong, the required control force 
may be extremely large. Therefore, the control force by Eq. 6 is modulated as  
 
 * * 1( ) [ ( ) ( ) ( )]i i i i iU t t tψ α δ λ−+ = − −U PB PZ&  (7) 
 
where *

iα  is a reduced factor of the control force in *0 1iα≤ ≤ . In addition, if the estimated 
control force iU  exceeds the capacity of the control device or may cause large post-yielding 
displacement, it is necessary to decrease the control force by the factor *

iα .  
 

PSO-SA hybrid searching algorithm 
 

A constrained optimization method is utilized in this study to search the optimum sliding 
surface of the sliding mode control for the target bridge under extreme earthquakes. The 
objective of the structural control is to decrease the deck displacement and the column ductility 
such that the objective function is designated as 
 

 
( )

1 2
1

( ) max( ( ) ) max( ( ) )
m

d cf W x t W x t
=
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where [ ]1 2, , , T

nX X X=X K  consists of n design variables. m is the total number of the 
columns ; 1W and 2W are weighting factors. Constrained functions and the bounds for the design 



variables are given as  
 

 
max ( )

( ) 1 0
0.4 (deck weight)

j
j

U t
g = − ≤

×
X ,  1 ~j m=  (9) 

 
( ) ( )

( ) ( )

max( ( ) ) max( ( ) )
( ) 1 0

ˆ ˆ( ) ( )

j j
c b

m j j j
c b

x t x t
g

x t x t+

+
= − ≤

+
X , 1 ~j m=  (10) 

 ( ) ( )i L i i UX X X≤ ≤ , 1 ~i n=  (11) 
 
in which ( )ˆ j

cx and ( )ˆ j
bx denotes the peak column and isolator deformations, respectively, at the thj  

pier in a uncontrolled system for the basis of comparison; ( )i LX  and ( )i UX  are the lower and 
upper bonds of the design variable iX , respectively.  

The combination of the objective function and the constrained functions multiplied by 
penalty parameters leads the fitness function ( )f X% as 

 
 1 21 1

( ) ( ) max(0, ( )) max(0, ( ))m m
j m jj j

f f g gλ λ += =
= + +∑ ∑X X X X%  (12) 

 
where 1λ  and 2λ  are penalty parameters. The optimum solution can be obtained by minimizing 

the fitness function ( )f X% . 
Particle swarm optimization is motivated from the optimization of social behavior of 

animals, such as bird flocking. In implementation of PSO, a solution of the studied problem is 
called a particle. The particles exchange information to one another for searching the optimum 
solution. The population of particles is initialized with random positions and velocities. A flock 
of p particles is considered in n-dimensional search space. The position and velocity of ith 
particle are updated according to the following: 
 
 1 1 1 2 2( ) ( )i i i i g i

k a k k k k kw c r c r+ = + − + −v v p X p X ; 1 1
i i i
k k k+ += +X X v  (13)  

 
where the subscript k indicates the generation number and the superscript i indicates the ith 
particle; v  and X  are the velocity and position vectors of the particle, respectively; i

kp  is the 
best position vector of the ith particle prior to the (k+1)th generation while g

kp  is the global best 
position vector prior to the (k+1)th generation in the swarm; 1r  and 2r  are uniform random 
factors varying in the range of [0,1]; 1c  and 2c  are positive acceleration constants. wa is an 
inertia weight presented by Eberhart and Shi (1998). 

Fourie and Groenwold (2002) proposed a rule to dynamically decrease the inertia weight 
and maximum velocity if there is no more improved solution after running h consecutive 
generations.  The rule is written as 

 
 max max

- 1 1if   ( ) ( ) ,  then   and  g g
k k h k k k kf p f p w wα β+ +≥ = =v v% %  (14) 

   
where α  and β  are the decreased factors between 0 and 1. The initial maximum velocity max

0v is 
defined as 

 



 max
0 ( )U Lγ= −v X X  (15) 

   
in which UX  and LX are the upper and lower bond vectors of a particle, respectively; γ  is a 
fraction to decrease the initial search space. Moreover, Juang and Chuang (2007) proposed a re-
initialized rule to avoid insignificant maximum-velocity maxv as 
 
 max max max

1 0if  0.001,  set k k+≤ =v v v  (16) 
 

The global best solution is of importance to guide the search direction. If the global best 
solution is entrapped in a local optimum solution, the searching efficiency will decrease. In 
order to prevent the solution of the PSO from converging to a local minimum, Juang and Chuang 
(2007) developed the PSO-SA hybrid searching algorithm combining the particle swarm 
optimization and simulated annealing. The SA provides a possibility to jump and leave away 
from a local minimum.  

If the global best solution is not improved after h consecutive generations, a new solution 
ˆ g

kp  near the global best solution is calculated by using two uniform random numbers 1R  and 
2R  in the range [0,1] as 

 
 1 2 2ˆ ˆif  0.5 ,  ( ); otherwise,  ( )g g g g g g

U Lk k k k k kR R R> = + − = − −p p X p p p p X  (17) 
 

Whether the new solution can be accepted or not is determined by the Boltzmann 
probability factor as 
 
 exp( )P f KT= −Δ %  (18) 
 
where fΔ %  is the difference of the fitness value between the new solution ˆ g

kp and the current 
global best solution g

kp ; K is Boltzmann’s constant and T is the temperature. 
If fΔ%  is smaller than or equal to zero, the new solution ˆ g

kp  is accepted to be the new 
global best solution. If fΔ%  is larger than zero, generate a uniform random number between 0 and 
1 and compare it with the Boltzmann probability factor P. If the generated random number is 
less than P, the new solution is accepted to be the new global best solution, or the current global 
best solution remains.  

In processing SA, the initial temperature startT  and the final temperature endT  are given in 
advance. At each search, the temperature iT  is updated by multiplying the previous temperature 

1iT−  by a reduction factor redT . The search continues until the temperature reaches the final 
temperature. Then the final solution is regarded as a new global best solution. 
 

Numerical simulation and results 
 

The PSO-SA hybrid searching algorithm is adopted herein to explore the optimum sliding 
surface of the sliding mode control for the target bridge. The bridge is subjected to a near-field 
ground motion recorded at JMA Kobe Observatory in the 1995 Kobe, Japan earthquake.  The 
poles of the sliding surface determine the characteristics of structural dynamic behavior. In this 
study, totally five poles of the sliding surface for the target bridge are assigned directly, which is 



called the pole assignment method.  
Assume that the poles are two conjugate complex numbers and three real numbers: 

1 2,  ,  di s sξω ω− ± − −  and 3s−  where ω  and 21dω ω ξ= −  are undamped and damped 
frequencies, respectively, and ξ  is the modal damping ratio. Therefore five parameters of the 
poles are the design variables, including 1 2 3, , , ,s s sω ξ , in PSO-SA hybrid searching algorithm.  
In addition, *

iα by Eq.7 is also considered as a design variable. The bounds for the design 
variables are given as follows: 

 
 *

1 2 30.1 2 / 10 ; 0.05 0.99;  1 ,  ,  1000 ; 0.01 1if s s sπ ω ξ α≤ = ≤ ≤ ≤ ≤ ≤ ≤ ≤  (19) 
 

The design parameters of the PSA-SA hybrid searching algorithm are shown in Table 2. 
The weighting factors of the objective function are 1W = 2 and 2W = 0.5. The penalty 
parameters of the fitness function are 3

1 10λ =  and 9
2 10λ = . 

Figure 3 shows the global best fitness values of all particles for ten searches. It is 
observed that the fitness value decreases as the number of generation increases and then 
converges before 500 generations. In the case of the best solution, the poles are 1.66 6.68i− ± , 

297− , 303− and 74− , and the restricted parameter *
iα of control force is 0.5153.  

Figure 4 shows the forces exerted by three control devices in the best case of the 
controlled system with the PSO-SA hybrid searching algorithm. Figure 4 also compares the deck 
displacement in the uncontrolled system and the controlled system with the PSO-SA search. As 
observed in Fig.4, the deck displacement decreases significantly under control. The hysteretic 
loops of the isolators and columns in the best controlled case and in the uncontrolled case are 
presented in Fig.5. It is found that all isolators and columns except for column 2 exhibit 
nonlinear behavior in the uncontrolled system while isolator 3 and column 2 clearly undergo 
nonlinear behavior in the controlled system.  

The best and worst results in ten searches are compared with the results by the parametric 
study method (Lee and Chen 2008). Table 3 shows the fitness values, peak forces and peak 
responses in the uncontrolled system, the active controlled systems with the parametric study and 
the PSO-SA search. The fitness value, deck displacement and isolator deformations decrease 
dramatically in all controlled systems. The best case of the PSO-SA presents the best control  

 
 
 
 
 

Table 2. Parameters of PSO-SA hybrid 
optimization method 

 
parameters value parameters value

maxk 500 h  3 
N  

(population 
size) 

20 maxw  1.4 

1c 0.5 minw  0.8 

2c 1.6 startT  450 
γ  1 redT  0.97 
α  0.99 endT  300 
β 0.95   
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Figure 4. (a) Control force and (b) comparison of the deck displacement with and without control 
subjected to JMA Kobe ground motion 

 

 
Figure 5. Hysteresis loop of (a) isolator 1 (b) isolator 2 (c) isolator 3 (d) column 1 (e) column2  

(f) column 3 
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performance on the deck displacement. The peak column displacements in both cases by the 
PSO-SA search are smaller than those in the case by the parametric study. The results reveal that 
the PSO-SA hybrid searching algorithm is superior to explore the optimum sliding surface of the 
sliding mode control such that the seismic responses of the isolated bridge can be significantly 
mitigated under the structural control.  
 

Conclusions 
 
 The effectiveness of the sliding mode control for the isolated bridge with the columns of 
irregular height is studied. A four-span isolated bridge with three columns of irregular height and 
two abutments is analyzed. The PSO-SA hybrid searching algorithm is adopted to explore the 
optimum poles of the sliding surface, which dominates the dynamic behavior of structures, of the 
sliding mode control. The objective of the structural control is to mitigate the deck displacement 
and column deformation when the target bridge is subjected to strong earthquakes. Numerical 
simulations are carried out to understand the control performance of the sliding mode control 
with the sliding surface whose poles are determined by the PSO-SA hybrid searching algorithm. 
The analytical results are also compared to those with the sliding surface whose poles are 
determined by the parametric study method.  The simulation results reveal that the sliding mode 
control can significantly decrease the seismic responses of the isolated bridge with columns of 
irregular height. The sliding mode control with the optimum sliding surface obtained by using the 
PSO-SA hybrid searching algorithm can more effectively decrease the seismic responses of the 
target bridge than by using the parametric study method. Also the PSO-SA hybrid searching 
algorithm is simpler and more suitable for practical application. 
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