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ABSTRACT  

Estimating the expected loss for an earthquake requires simulating sets of stochastic GM fields 
that reflect the inter-event and intra-site spatial correlation and at the same time are constrained 
by the available earthquake ground motion data. For many past earthquakes, the only available 
ground motion related data are the MMI maps.  This paper presents a practical method for 
simulating stochastic ground motion fields that account for inter-event and intra-site correlation 
effects and are constrained by the recorded or inferred MMI-based ground motions.  

Introduction 
 

Estimating regional financial losses for earthquakes is important for both public safety 
and financial risk planning. A reliable regional loss estimate for an earthquake requires a 
comprehensive earthquake risk analysis model that is well calibrated against losses from past 
earthquakes.  One of the most important components of the calibration process is the simulation 
of the ground motions for the calibrating earthquakes at the exposure locations. Ground motion 
(GM) simulation is also an important issue for real-time earthquake loss analysis, where GM 
footprints of an earthquake need to be constructed within a few hours of its occurrence. In 
general, the current practice for such analysis is to simulate regional GM footprints of 
earthquakes using the regional empirical attenuation equations and include some consideration 
for GM uncertainty.  
 

For earthquake GM simulation, modelers often try to capture the regional characteristics 
of the earthquake by imposing GM constraints using the recorded ground motion data. However, 
for earthquakes that have no GM recordings, the available information is often limited to MMI 
intensity maps. In such cases the MMI data needs to be translated into GM values using 
empirical equations. There are large uncertainties in both the MMI contour maps and the MMI-
PGA or MMI-Sa (spectral acceleration) empirical conversion equations, which need to be 
considered. The GM simulation becomes more complex as one also tries to account for the inter- 
and intra-event GM variability, and intra-station GM correlation. It is the objective of this study 
to investigate a cost-effective procedure for simulating stochastic GM footprints of earthquakes 
constrained by different types of GM data, obtained from direct recordings or inferred from MMI 
contour maps. 
 

For earthquake loss analysis of portfolios, it is important to account for the GM 
uncertainty and spatial correlation. Even if one is only interested in estimating the expected loss 
and not the uncertainty in loss estimates, accounting for GM uncertainties is important because 
of the nonlinear damage response of buildings to earthquake- GM.  Fig. 1, reproduced from a 
study by Mahdyiar et al. (2006), demonstrates this point. The figure shows a comparison 
between the losses for the 1906 San Francisco earthquake at different sites, calculated with and 
without taking into account the GM uncertainty. Buildings at sites close to the San Andreas fault 
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experience high levels of GM and, considering the typical shape of damage functions, mostly 
experience damage according to the linear parts of the damage functions. For these sites, there 
are good agreements between the mean losses calculated with and without considering GM 
uncertainty. This agreement, however, breaks down and the differences between these two 
estimates of the expected loss increase with increasing the source-site distances.  At large source-
site distances, buildings experience low levels of GM and are mostly damaged according to the 
nonlinear parts of the damage functions.  For these sites, as is shown on Fig. 1, the expected loss, 
calculated by considering the GM uncertainty, is higher than the expected loss based on the 
median GM.   
 

 
 
Figure 1.    Expected loss values for the 1906 San Francisco earthquake at different sites 

calculated with and without considering the effects of GM uncertainty 
 

Model Formulation 
 

The most recent empirical attenuation equations formulate the ground motion 
uncertainties in terms of inter- and intra-event random effects. The inter-event variation reflects 
uncertainties in the source parameters, and the intra-event variation reflects the combined path, 
site, and other non-source related uncertainties (Abrahamson and Silva, 1997). A typical 
attenuation equation can be formulated as: 
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where Interε and Intraε are the inter- and intra-event random errors, assumed to be independent, 
and normally distributed with zero means and a standard deviation (SD) of Interσ  and Intraσ , 
respectively.  It can be shown that such stochastic GM field produces the following spatial 
correlation for any two sites: 
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However, the GM correlation for sites close to each other can be larger due to the intra-
site correlation that depends on the distance between the sites. The intra-site correlation can 
make an important contribution to the regional loss distribution making the damage from some 
earthquakes very costly, (Bazzurro and Park, 2007).  The overall GM correlation, after including 
the intra-site correlation, can be formulated as:  
 

IntraInter

IntraInter
T

d
22

22 *)(
σσ

σρσρ
+

+
=       (3) 

 
where ρ  is the intra-site correlation with representing the distance between stations  (Boore 
et al, 2003, and Bazzuro et al., 2007). Fig. 2 shows the distribution of versus distance for 
typical values for 
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Figure 2.    The integrated correlation coefficients for a pair of stations as a function of distance 

between the stations 
 

Another important component of earthquake GM simulation involves capturing the 
earthquake’s regional GM characteristics. For earthquakes with GM recordings, the GM 
information can be used to constrain the simulation at sites near the recording stations. For 
earthquakes with MMI data or contour maps, the MMI information can be translated into GM 
values and be used to constrain the simulation, while taking into consideration the uncertainty in 
the MMI-GM conversion. The task, therefore, is to formulate a stochastic GM simulation 
procedure that is based on the regional attenuation equations, capture the stochastic nature of the 
GM as described by Eq. 1, capture the intra-site correlation effects, and incorporate the 
constraints imposed by different kinds of observations. 
 

A practical way to approach this problem, given the regional attenuation equations, is to 
simulate a set of stochastic GM residuals, with respect to the median GM, at sites of interest that 
conform to the imposed GM constraints. The ensemble of many sets of residual fields capture the 
realization of the regional inter-event, intra-event, and intra-site correlation effects. Given that 
the residuals are simulated with respect to the median GM for the reference site conditions, 
regional earthquake GM footprints can be constructed using the information on the shallow soil 
site conditions. Simulating the correlated random field with no intra-site correlation effects is 



rather simple and can be achieved by a two-step simulation process based on Eq. 1. However, 
this approach creates ground motion fields with a constant site-to-site correlation that is 
independent of the distance between the sites.   
 

There are different techniques available for simulating spatially correlated stochastic 
random fields, representing residuals, with variable intra-site correlation. Cholesky 
decomposition and simulation procedures have successfully been used for such purposes 
including the cases where constraints from observed data need to be imposed (Bazzuro et al. 
2007).  However, Cholesky decomposition can become time consuming if the size and the 
bandwidth of the covariance matrix are large. A cost-effective method for simulating a random 
field with isotropic spatial correlation is the spectral transformation and simulation technique 
(Keqiang and Xu, 2009). In this approach, the covariance matrix is transformed to the frequency 
domain using the Fast Fourier transformation (FFT). Imposing a random phase in the frequency 
domain, the correlated random field is simulated using the inverse FFT as follows: 
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where  is the spectral density function, )k(S k is wave number, and A  is a set of complex random 
numbers that capture the randomness of the field over the wave number domain. This procedure 
is a straightforward and relatively fast way of creating random fields over large scale grids with 
isotropic correlation effects. The values for Acan be constructed by taking the FFT of a set of 
random numbers at grid points drawn from a Gaussian distribution.  Multiple realizations of Eq. 
5 will create a normally distributed set of random numbers at each grid point that conform to the 
GM residuals and the spatial correlation requirements. The GM at each site can be written as: 
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The GM correlation coefficient for any two sites can be written as:  
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where and are the SD of GM and 

iYσ jYσ iσ and jσ are the SD of the residuals. From Eq. 6, it is 

clear that SD of the GM and residuals are the same.   
 

By adding these residuals to the median GM, and applying the shallow site response, a 
single stochastic realization of the GM footprint for the earthquake is created. However, as was 
discussed earlier, it is often necessary to constrain the simulation with the recorded GM data or 
inferred GM data from an MMI map. Let us consider a single site with the GM recordings of , 
which includes PGA and various spectral values. The objective is to capture the overall effect of 
the source, path, and site conditions that created the GM  at the recording site, and 
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incorporate this effect in the GM simulation of sites nearby. Given the site condition of the 
recording site, the shallow soil site response can be removed from to calculate the GM at the 
site for the reference site conditions, and then the residuals, , with respect to the median GM of 
the attenuation equation. The residuals capture the overall effects of many complex phenomena 
that, in general, are formulated by the inter- and intra-event random effects shown in Eq. 2. 
Considering that the shallow site condition effects are removed, the residuals  should have 
some prevailing local effects. For each grid point within some distance of the recording site we 
define a new random variable as a linear combination of and the simulated random field at the 
grid point as follows: 
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where iα  is a coefficient that controls the contribution of the constraining residual , relative to 
the contribution of the stochastically generated residuals at the grid point. 
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Figure 3.    The distribution of correlation coefficients between simulated residuals at different 

pairs of sites as a function of the distance between the sites 
 

The value of iα  is only a function of distance, and decreases as the distance between the 
grid and the recording site increases. It can be shown that the simulated residuals based on Eq. 8 
produce a GM field with the same spatial correlation between any pair of grids as the simulated 
GM field based on the original unconstrained residuals. The simulated GM at each grid point 
based on Eq. 8 can be written as:  
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The mean and the variance of this GM field are: 
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The correlation coefficient between GMs at any two grid points can be written as:  
 

ji

ji

jiji

jjii
c

j
c

i

c
j

c
ji

cc
i

RRE

RREYYYYE

σσ

σσαα
αα

σσ
ρ

*
)]*[(

**)1(*)1(
}]*)1{(*}*)1[{(

*

)](*)[(
=

−−

−−
=

−−
=

 (12) 

 
This is the same correlation coefficient as that of Eq. 7 for the unconstrained GM fields. 

This is an interesting result that validates the use of Eq. 8 for imposing constraints on randomly 
simulated fields of residuals. It is especially attractive since one can control the degree of 
contribution of the constraining GM data on the simulated random residuals. As will be 
discussed shortly, this becomes a useful procedure for imposing constraints from MMI contour 
maps to account for the large uncertainties that arise from inferring the GM from intensity. The 
formulation of Eq. 8 was presented for the case of imposing GM constraints from a single 
recording site. However, the formulation can be generalized to cases where the constraints are 
from multiple recording sites. In these cases, the modified random field can be written as: 
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where K is the normalizing factor.  It can be easily shown that this formulation maintains the 
same correlation coefficient as that of Eq. 7 for the unconstrained GM fields. 
 

Fig. 3 shows the correlation coefficients for a randomly selected pair of sites, as a 
function of distance between the sites. The figure is based on samples of random numbers at 
each grid, as indicated. In both cases, the general pattern of the correlation coefficient shown on 
Fig. 2 is captured. However, as expected, the scatter of the correlation coefficients from the 
theoretical curve, Fig. 2, is larger for the case with the smaller number of samples. The results, 
presented in Fig. 3, are from a two-dimensional random field with a 1024x1024 grid points, at 1-
km intervals. The simulation noise, (i.e., the scatter shown on Fig. 3) increases as the number of 
degrees of freedom increases. However, the pattern of scatter shown in the figure suggests that a 
100-sample simulation can provide an unbiased estimate of the median field.  
 
 

Ground Motion Simulation of Izmit 1999 Earthquake 
 

We use the formulation of Eq. 13 to simulate a set of stochastic GM footprints for the 
M7.5 Izmit earthquake of 1999, constrained by both the observed GMs and the MMI contour 
map (Brian et. al., 2008 and Turkey General Directory of Disaster Affairs, 2009). Fig. 4 shows 
the earthquake rupture line and the locations of the recording sites. Using Fig. 2 as the basis for 
constructing the inter-event and intra-site correlation, we simulated 100 sets of random residual 
fields, normally distributed at each grid point and covering an area of 1024x1024 km2 with 1-km 



grid intervals. Each set of random fields, as was discussed, represents a single realization of the 
GM residuals.  
 

Using Eq. 13, the random residuals within 10 km of each recording site were combined 
with the calculated residuals from the recorded data shown on Fig. 4.  The values of  are 
designed in such a way that grids within 1 km of each recording site get 90% of the contribution 
from the observed GM data. The contribution from the observed data trends to zero at a distance 
of 10 km.  

α

 

 
 
Figure 4.    Surface rupture lines and the distribution of GM recording stations, 1999 Izmit 

earthquake 
 

Fig. 5 shows the correlation coefficients for the simulated ground motions, with 
constraints, at randomly selected pairs of grid points. The correlation coefficients are shown as a 
function of the distance between the grid points for cases of using 100 and 300 samples at each 
point. In both cases, the general pattern of the correlation coefficients are very similar to Fig. 3, 
which indicates the success of using Eq. 13 for imposing GM constraints without disturbing the 
spatial correlation effects.   
 

It should be mentioned that, before conducting the GM simulation, we examined the 
residuals of observed GMs to check for any systematic bias in the set of attenuation equations 
used in this study for calculating the median GM values. The residuals of the observed ground 
motions suggest some systematic bias beyond a distance of about 200 km, indicating that GM is 
overestimated at distant sites. This can be attributed to differences in the Q values for 
northwestern Turkey versus what might be the representative Q for the set of attenuation 
equations used in this analysis. We made a Q-related correction to adjust the observed bias. 
However, considering the low level of ground motions at distances beyond 200 km (where the 
bias is observed) further discussion of this issue is beyond the scope of this paper and would not 
affect the results presented here.  
 

Fig. 6 shows four realizations of the 0.3 s Sa footprints for the 1999 Izmit earthquake, all 
constrained by the observed GM data. All simulations account for the shallow soil site response. 
The general GM footprints, and close evaluation of the areas near the recording sites (not 
shown), demonstrate the effectiveness of the methodology for creating a coherent stochastic GM 
random field. Obviously, more GM data for the earthquake will constrain the randomness of the 
simulated field and give a more realistic GM footprint for the earthquake. Realistically however, 
there is never enough data to fully constrain the high-frequency components of an earthquake’s 



GM field on a regional scale. Therefore, stochastic GM simulations, such as those shown on Fig. 
6, are valuable for estimating regional loss distributions.  
 

 
 
Figure 5.    The distribution of the correlation coefficients between simulated GMs at different 

pairs of grids as a function of the distance between the grids. The simulated GMs 
include the constraining effects of 29 recorded GM values. 

 

 
 
Figure 6.  Four footprints of the M7.5 Izmit earthquake of 1999 (0.3 s SA) 
 

For many past earthquakes, GM data is either very limited or not available at all. In such 
cases, it is desirable to use the earthquake’s MMI data, or contour map, to constrain the GM 
simulation. Obviously, the MMI data can be converted into GM values to constrain the GM 
simulation as described earlier.  However, considering the qualitative nature of the MMI data and 
maps, there are large uncertainties in both the accuracy of the data and the MMI-GM empirical 
equation conversion.  
 

The data integration formulation of Eq. 13 is well suited for accommodating the influence 
of uncertain GM data on the stochastic simulation. The parameter α in Eq. 13 is a relative 
measure of the contribution of the observed versus the simulated residuals. For the cases where 
real GM recordings are used, the value of α at grid points very close to recording sites should be 
close to one, forcing the simulated GM at these grid points to be very similar to the recorded GM 
at the sites. However, at sites with inferred GM data based on MMI, where there is uncertainty in 



the inferred GM, the values of α  at grid points close to the sites can be less than one, reflecting 
the modeler’s confidence in the quality of the inferred data. 
  

The attractiveness of the formulation of Eq. 13 is that it allows us to combine the effects 
of data that have varying degrees of accuracy. This is a practical way to constrain the GM 
simulation by mixing real GM recordings with inferred GM data based on MMI.  Fig. 7a shows 
one stochastically simulated GM field, and the MMI contours, for the M7.5 Izmit earthquake of 
1999, using one of the sets in Fig. 6. The GM footprint in this figure is constrained only by the 
29 recorded GM data points.   
 

     
Figure 7.    Stochastically simulated GM fields and MMI contours.  Left, figure, Fig. 7a, shows a 

simulation that is constrained only by the 29 recorded GM data.  Right, figure, Fig. 
7b, shows the GM simulation that is constrained by the 29 recorded GM and inferred 
MMI-based GM at grid points.  Both figures use the same set of random residuals for 
simulation. 

 
Fig. 7b shows a reconstruction of the GM footprint shown on Fig. 7a but constrained by 

the inferred GM values from the MMI contour map.  For this simulation, the contour map is 
digitized at 2 km intervals. Using the GM intensity tables (Atkinson and Kaka, 2007), the MMI 
at each grid point is translated to GM values using the medians for conversion. Using Eq. 13, the 
inferred, and the 29 recorded, GM residuals are used to constrain the GM simulation. The 
maximum values of 0.7 and 0.9 are used in Eq. 13 for the inferred and recorded GM values, 
respectively. It should be stated that these values are selected for this presentation and can differ, 
based on modeler’s judgment.  
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The GM footprint presented on Fig. 7b demonstrates the effectiveness of the 

methodology to stochastically capture the MMI values and regional pattern. Obviously, for the 
same set of random residual fields, different footprints reflecting different confidence levels on 
the MMI-based inferred GM data can be simulated. For this study, we sampled the entire MMI 
map. However, in reality, MMI maps are constructed based on data that are mostly concentrated 
around cities and towns with damage reports. Therefore, it makes sense to sample the MMI maps 
around the center of population. 
 
  



Summary and Conclusion 
 

Estimating the expected loss for an earthquake requires simulating different sets of 
stochastic GM fields that reflect the inter-event and intra-site spatial correlation, and are 
constrained by the available earthquake GM data. We presented a practical method for 
simulating such GM fields. The methodology presented here is versatile in that it allows one to 
incorporate into the simulation the effects of direct GM recordings as well as the less accurate 
MMI-based GM data. The data integration methodology is formulated to capture and reflect the 
modeler’s confidence in the quality of GM data used in the simulation. The model presented here 
provides a practical approach for simulating realistic GM fields for past earthquakes with MMI 
maps using our present knowledge on the stochastic nature of GM fields and the related effects 
of spatial correlation. 
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