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ABSTRACT 
 
 This paper challenges the view that building pounding can be adequately 

modelled with rigid diaphragms at each floor. Two existing low rise RC frame 
buildings located in Wellington, New Zealand are subjected to an abridged El 
Centro record. Non linear time history simulations are undertaken with both 
lumped mass (rigid diaphragm) and distributed mass (flexible diaphragm) 
assumptions. Multiple building configurations are modelled to allow floor-to-
floor and floor-to-column contact to occur at different points on the two 
structures. Building displacements are found to be sensitive to diaphragm 
flexibility only in specific circumstances. However, significant sensitivity is 
shown in the shears of columns that come in contact with adjacent floors, with 
shear results differing by up to 18 %. The consequences of pounding on the two 
low rise structures are also presented, and show critical element failures as a 
result of floor-to-column pounding. 

 
  

Introduction 
 
 While building pounding is commonly reported after earthquakes, scientific understanding 
of the phenomenon and its consequences is very limited. Many researchers have used numerical 
modeling of pounding to gain further insight into the process. Typically the modeling is similar to 
that shown in Figure 1 (Anagnostopoulos 1988; Maison and Kasai 1992; Jankowski 2006). A 
contact element is placed between two buildings at each floor, with the floors modeled as a single 
lumped mass. Alternatively the buildings’ frames may be explicitly modeled, but the floors’ 
diaphragms are rigidly slaved together so no diaphragm oscillation or mass distribution effects can 
occur. The specifics of the collision element vary but it typically involves a very large stiffness 
being activated once a specified gap has closed. Modeling of this type does not usually include 
allowances for floor-to-column pounding. 
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Figure 1. Typical pounding numerical modeling configuration 
 
 An alternative method investigated by the authors includes at least three lumped masses 
distributed over each diaphragm to allow the modeling of diaphragm mass distribution effects. 
Previous investigations have demonstrated that this method can produce displacement results 
that vary significantly from the method described in Figure 1 for buildings with all floors aligned 
(Cole et al 2009).   Furthermore, the relative magnitude of the difference in displacements can be 
qualitatively predicted by comparing the values of α, a property that is dependent on the 
diaphragm modeling method (Cole et al 2009b). The work presented herein extends this 
investigation to look at the performance of two real buildings with floors of different heights. 
Analyses are run with both axially flexible and rigid diaphragms for three different pounding 
configurations. A rigid diaphragm causes all floor mass to act immediately upon a floor 
collision, thus the diaphragm acts as a lumped mass. If a flexible diaphragm is used instead, the 
masses lumped at each node only interact with the collision force once the stress wave 
propagates through the adjacent diaphragm element. The effect of diaphragm mass distribution 
on building response resulting from floor-to-column contact is presented below. 
 

Model Setup 
 

Building Configuration 
 
 Two existing buildings from Wellington, New Zealand were selected for pounding study. 
The buildings are not actually situated next to each other; however the configuration represents a 
common scenario in New Zealand. Both buildings were selected because their details were 
readily accessible. Figure 2 shows the overall layout of the buildings Floors are labeled first by 
building number (left to right), followed by floor number. For example, B2F1 refers to building 
2, floor 1. 
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Figure 2. Building layout (floors are labeled first by building number followed by floor number) 
 
 Building 1 (shown on the left) was constructed in 1958 while building 2 was constructed 
in 1961 and both are currently in use as offices. Both buildings have been modeled using the 
guidelines produced by the New Zealand Society of Earthquake Engineers (NZSEE 2006).  
Element sections and floor seismic mass are presented in Figure 3 and Table 1, respectively. 
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Figure 3. Member section size 
 

Table 1. Floor seismic mass 
 

Floor Seismic mass (kN) Floor Seismic mass (kN) 

B1F3 910 - - 

B1F2 1080 B2F2 67 

B1F1 1080 B2F1 206 
 

Three building configurations are investigated; buildings aligned at ground level, at the first 
floor, and at the second floor, respectively. The floor alignment is achieved by raising the entire 



second building (Figure 4). Each configuration was run twice, once with all floors modeled as 
lumped masses and once with floors as distributed masses. All analyses had a nominal building 
separation of 0.01 m. Two analyses with no building contact were also run for reference (once 
with each mass assumption). 

Gnd 

1st 
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Figure 4. Building configuration allowing alignment of stated floor 
 

Contact element properties 
 

 The contact elements between the adjacent buildings have been calibrated following the 
recommendations of Watanabe and Kawashima (2004). Collision elements have stiffness equal 
to the greater axial element stiffness of adjacent diaphragms. Collision elements are modeled as 
completely elastic. 
 
Excitation 
 
 The first twelve seconds of the El Centro record, scaled as required by the relevant New 
Zealand standard (NZS1170.5; 2004), was used in all cases. The total record was scaled to an 
annual probability of exceedance of 1/500. The first twelve seconds then selected as it contained 
a portion of moderate excitation and also restricted the computation time to an acceptable 
duration. A time step of 0.00001 seconds was required to avoid excessive energy losses in the 
modeling. All modeling was undertaken using Ruaumoko, a non linear time history program 
developed at the University of Canterbury (Carr 2007). 
 
Column mass distribution 
 
 The distribution of mass in a column that undergoes contact may also make a significant 
difference to results. While column mass distribution is not likely to affect the global 
performance of the buildings, the local shears and moments could potentially be affected. As 
research on this particular topic is currently ongoing by the authors, five column elements have 
been used to model each column that undergoes collision to ensure realistic performance. 



Predicted Performance 
 
 The significance of the different diaphragm models can be qualitatively predicted by the 
method presented in the authors’ previous works (Cole et al 2009b). The parameter α appears in 
the formulae that predict diaphragms’ velocity after a single floor-to-floor impact (Equation 1). 
The lumped mass version of this formula is commonly known as stereo mechanics.  
 

 ( 21111 vv2vv −−=′ )α  (1)  
 

 Where and the subscripts ‘1’ refers to the diaphragm with the shortest axial period and 
‘2’ refers to the remaining diaphragm. V is diaphragm velocity immediately before collision and 
v’ is the velocity immediately after collision. The calculation of α is dependent upon the mass 
distribution and whether diaphragm has the shorter or the longer axial period (Table 2).  
 

Table 2. Calculation of α 
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Where T is the diaphragm axial period and m is the diaphragm mass. Thus, the greater 
the change in the value of α between mass assumptions, the larger the resulting differences in 
displacement (by Equation 1). Note the results can only be obtained for the collision of two 
diaphragms and therefore are not useful when floor-to-column collisions occur. For further 
information the reader is directed to the reference stated above. Figure 5 details the values of α 
for the cases where floor-to-floor collisions occur. 
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Figure 5.   Qualitative prediction of the effect of the mass distribution. Note the values for B1F2 

and B2F2 are only valid when the second floors are aligned, and B1F1 and B2F1 are 
only valid when the first floor is aligned (as this is when floor-to-floor contact occurs) 

 



 Thus very little displacement difference is predicted for building one as a result of floor-
to-floor collisions. This is a result of its much larger mass, which contains the majority of the 
system’s momentum. Floor 1 of building 2 is likely to be the most affected by the diaphragm 
models, while floor 2 of building 2 should also show some change in displacement. 
 

Results 
 
Figure 6 shows the positive (right) envelope displacements for each building configuration 
including no building contact. Eight series are shown; which identifies the four building 
configurations, for both the lumped mass (shown as LM) and distributed mass models. ‘No’ 
identifies the no contact case. ‘Gnd’, ‘1st’ and ‘2nd’ identify which floors are aligned in each 
configuration (as shown in Figure 4). Floor labels are shown on Figure 2. 
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Figure 6. Positive (right) displacement envelopes. LM denotes Lumped Mass 

 

 As predicted, the largest difference between the different mass assumptions is found in 
floor one of building 2, when the first floors are aligned. The only other notable difference 
occurs at floor 2 of building 2 when the second floors are aligned. Both these differences are in 
the order of 5 – 10 mm. The effects of building contact can be seen by comparing the no contact 
(labeled as ‘No’) with the other results. Building 2 is clearly much more affected than building 1. 
 
 The negative (left) displacement envelope is presented in Figure 7. The negative 
envelope results are almost completely unaffected by pounding, regardless of the height of 
building 2. This is because of the large mass difference between the two buildings; even when 
building 1 collides with building 2 (moving to the left), the momentum transfer is so small that it 
has almost no affect on building 2. In contrast, when building 1 hits building 2 (moving to the 
right), building 1 has to effectively push building 2 in order to displace further. This results in a 
more ‘forced’ momentum transfer. B1F3 is the only floor that shows any sensitivity to the 
location of pounding and even that is small. This increase in sensitivity can be attributed to ‘fling 



over’ effects. Fling over occurs when the top part of one structure continues to move over the top 
of the second structure while its lower storeys have been slowed due to collision. Large increases 
in shear can result from this phenomenon, particularly in tall buildings. 
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Figure 7. Negative (left) displacement envelopes. LM denotes Lumped Mass 
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Figure 8.  Negative interstorey shear envelope (corresponding to the right displacement 
envelope) 

 

 Figure 8 illustrates the global interstorey shears. The shear values shown are taken from 
the external columns (located at the end of the floor not undergoing collision). Columns are 



identified by the floor immediately above their location. Pounding has greatly increased the 
shear force in building 2, particularly at the top floor. Shear loading generally drops in building 
1. These results further illustrate the momentum and energy transfer that results from pounding 
interaction (in this case transferring from building 1 to building 2). Once again almost no 
dependence on mass distribution is noted. The shear capacity of each column is also shown and 
no capacity is exceeded. Positive shear results show very little sensitivity to pounding and mass 
distribution. 
 
 Figure 9 shows the local shear in the columns that endure collisions. Note many of these 
columns only suffer a column collision in some configurations. For example, when the first 
floors are aligned, the only mid column collision occurs in the column under B1F2 (refer 
Figure 4). Only column B1F2 has collisions in all configurations. Each column now has two 
shear loadings; a shear below the point of impact (shown as ‘-’) and a different shear above the 
point of impact (shown as ‘+’). The columns’ capacities are exceeded in all configurations 
except when the second floors of the two buildings are aligned. The worst results are found when 
the ground floors are aligned. This is because column collision is the only means of momentum 
transfer between the two buildings. It is likely that both the ground floor and first floor alignment 
would thus result in at least one building collapse due to column shear failure. As columns are 
almost always critical elements within a structure, local shear failure is likely to cause global 
collapse. The shear loading also shows a surprisingly high dependence on mass distribution 
when compared to other results. For B1F1-, the distributed mass model predicts shear failure 
while the lumped mass does not. This difference would potentially change the retrofit 
recommendations by an engineer undertaking a pounding analysis. However, in this particular 
case, the result would not have been critical because B1F1+ also exceeds capacity and thus the 
column between the ground and floor one is predicted to fail anyway. 
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Figure 9. Negative shear on columns subject to impact 



Conclusions 
 
 Base on the results of the analytical investigation conducted in this study, the following 
key points are noted; 

1. Two real buildings undergoing pounding are modeled for a moderate earthquake 
excitation. Pounding is shown to significantly affect the two buildings when compared to 
the same excitation without pounding. Building 1’s displacements are generally reduced 
while building 2’s displacements increase. 

2. The qualitative prediction of displacement sensitivity was successfully achieved using 
the method outlined in previous papers by the authors (Cole 2009b). The largest 
displacement dependence on diaphragm flexibility was accurately predicted. However, 
this prediction can not be accurately extrapolated to other building properties, such as 
shear force. 

3. For the analyzed building configuration, both global shear and displacement results were 
generally found to be insensitive to mass distribution. However, shear loadings on 
columns that undergo collision can be significantly affected. In the examples shown the 
local shears differed by up to 18 %. 

4. For the given excitation, the two analyzed buildings are predicted to survive if there was 
a sufficient gap to prevent pounding. However if pounding does occur as modeled, both 
buildings are likely to collapse due to column shear failure. Column pounding is thus a 
critical factor to consider when retrofitting existing buildings 

 
 Based on the above work, distributed mass diaphragms are recommended when modeling 
either floor-to-floor or floor-to-column pounding if local shearing actions are required. It is noted 
that the building configurations presented above are not optimized to cause diaphragm 
oscillation; thus other building configurations may show significantly more dependence on mass 
distribution. Research is ongoing into other building configurations and their sensitivity to mass 
distribution.  
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