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ABSTRACT 
 
 Fiber reinforced elastomeric isolators (FREIs) can be effectively used for 

seismic mitigation of structures. In contrast to conventional steel reinforced 
elastomeric isolators (SREIs), FREIs are significantly lighter in weight, and can 
be fabricated in a cost-effective manner. Unlike SREIs, the reinforcement layers 
in FREIs are flexible in extension and have no bending rigidity. As a result, the 
response characteristics of FREIs are different, and in general more complex than 
those corresponding to SREIs. Due to the fiber flexibility, the theoretical 
approach employed in the stiffness analysis of SREIs cannot be directly extended 
to FREIs. Analytical closed-form techniques for stiffness solution of FREIs under 
vertical pressure have been presented in the literature. There is a need to compare 
these solutions with more rigorous numerical techniques. In this paper, a finite 
element approach has been employed to investigate the static response of a 
strip FREI under a compressive vertical load. A hyperelastic model has been used 
for the rubber material in the finite element code. Results of the finite element 
analysis, including compression stiffness and stress distributions in the 
elastomeric layers, have been compared with those predicted by the closed form 
analytical solution.  

  
  

Introduction 
 
 Fiber reinforced elastomeric isolators (FREIs) consist of alternating bonded layers of 
elastomer and fiber reinforcement. In contrast to steel reinforced elastomeric isolators (SREIs), 
FREIs are significantly lighter in weight and potentially more cost effective if fabricated through a 
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mass production manufacturing technique. 
 
 Previous research has confirmed the effectiveness of FREIs in seismic isolation of typical 
low-rise structures (Toopchi-Nezhad et al. 2009). The role of fiber reinforcement in a FREI is 
primarily to provide vertical stiffness by limiting the lateral bulging of the elastomeric layers 
when the isolator is subjected to vertical compressive loads. It should be noted that the 
reinforcing steel plates play the same role in conventional SREIs. However, unlike the steel 
reinforcement in a SREI, which is rigid in elongation and has significant bending rigidity, fiber 
reinforcement in a FREI is flexible in extension and has negligible bending rigidity. Therefore, 
the response characteristics of a FREI in both the vertical and horizontal directions are 
significantly different than a corresponding SREI. Consequently, current analytical solutions 
derived for SREIs cannot be directly extended to FREIs.  
 
 The “pressure solution” is a commonly used analytical approach in predicting the vertical 
stiffness of conventional SREIs (Kelly 1997). A modified version of this analytical approach 
which accounts for the in-plane tension flexibility of the fiber reinforcement has been developed 
for the vertical stiffness evaluation of FREIs (Kelly 1999). This paper presents a detailed 
comparison between the results of the “pressure solution” and finite element analysis by 
investigating the vertical stiffnesses of infinitely long strip FREIs under constant compressive 
load. The main research objective is to verify the accuracy of the “pressure solution” in vertical 
stiffness analysis of strip FREIs reinforced with fiber reinforcement layers of different in-plane 
tensile rigidity. The physical and material properties of the elastomeric layers are identical for all 
FREIs considered in this study.  
 
 

Pressure Solution 
 

 The “pressure solution” (Kelly 1997) is commonly used for stiffness analysis of 
conventional SREIs under vertical compressive loads. This method assumes that the elastomeric 
material in the isolator is linear elastic. Additionally, as an elastomeric layer in a SREI is 
laterally confined by the rigid steel reinforcing plates, the deviatoric component of normal 
stresses in the elastomer is neglected. Therefore, noting the coordinate system shown in Fig. 1, 
the stress state in an infinitely long elastomeric layer is characterized by pzzxx =≈σσ (where, p
is an internal pressure), and 0≠xzτ . The pressure p is obtained by solving a partial differential 
equation resulting from the equilibrium of stresses and the constraint of incompressibility in the 
elastomer. 
 
 The “pressure solution” approach has been also employed in vertical stiffness analysis of 
FREIs (Kelly 1999). However, the solution has been modified to account for the stretching of 
fiber reinforcement layers, which cannot be neglected in the analysis. Figure 1 shows the sketch 
of a single elastomeric layer of width a2  and thickness t , which is bonded between two 
reinforcement layers forming an infinitely long rectangular pad. In a typical elastomeric isolator 
of plan area A  consisting of n  pads with a total thickness of elastomeric layers of nttr = , the 
vertical stiffness, vK , is defined as (Kelly 1997) 
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In Eq. 1, cE , the effective compression modulus of the strip FREI, using “pressure solution” 
approach is given by (Kelly 1999, Tsai and Kelly 2002): 
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where, a  is half the isolator’s width, t  is the thickness of the elastomeric layer, taS /=  reflects 
a shape factor index, G  is shear modulus of the elastomer, and fk is the in-plane tension 
stiffness of the fiber reinforcement, which is defined based on fE  (Young’s modulus), ft
(thickness), and fυ  (Poisson’s ratio) as follows 
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 Equation 2 is expected to be reasonably accurate for FREIs having shape factors ranging 
between 5  and 15 (Kelly 2002). It should be noted that for conventional strip SREIs, the 
“pressure solution” leads to an effective compression modulus of  24GSEc =  (Kelly 1997).  
 
The distribution of internal pressure, p , along the width of the FREI is given by Kelly (1999) as: 
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where δ  represents the vertical deflection of a single elastomeric layer in the isolator. 
 
 
 
 
 
 
 
 
 

Figure 1.    Sketch of an infinitely long rectangular pad 
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The Strip FREIs Considered in this Study 
 
 In order to verify the accuracy of the “pressure solution” and to study the role of fiber 
reinforcement in the vertical stiffness of FREIs, six isolators with different Gtk f /  values were 
investigated. The ratio of Gtk f /  indicates the relative in-plane tension stiffness of the fiber 
reinforcement to the shear stiffness of the elastomeric layer. The values for Gtk f /  selected in 

this study were 432 10,10,10,10 , and 510 . Each isolator contained eleven mm10  thick rubber 
layers interleaved with ten fiber reinforcement layers. All isolators were subjected to a mean 
vertical pressure of MPapm 3= . The material properties of fiber reinforcement were 
characterized with GPaEf 137=  and 2.0=fυ . Shear modulus of the elastomer was assumed to 
be MPaG 4.0= . The width and height of the individual elastomeric layers in all of the isolators 
were mm200  and mm10 , respectively. This leads to an identical shape factor of 10=S  for all of 
the isolators which falls within the accepted range of shape factors for application of the pressure 
solution (Kelly 2001). Therefore, for the isolators investigated, the pressure solution results can 
be reasonably compared with the finite element solutions.  
 
 

Finite Element Approach 
 

 The finite element analysis was carried out using Abaqus software (Abaqus Theory 
Manual 2007). Nonlinear elasticity of the elastomeric material was simulated using a Neo-
Hookean hyperelastic material model provided in Abaqus.  Given the MPa4.0  shear modulus of 
the elastomer and its bulk modulus of MPa2000 , the Neo-Hookean coefficients were calculated 
to be 2.010 =c , and 001.01 =D . The elastomeric layers were discretized using 4-node bilinear, 
plane strain, quadrilateral, hybrid, constant pressure solid elements called CPE4H. The fiber 
reinforcement was modeled using 2-node linear 2D truss elements called T2D2 (Abaqus Theory 
Manual 2007).   
 
 Two rigid contact supports were defined at the top and bottom of the isolators. All of the 
degrees of freedom of the bottom support were fixed. The top support was allowed to move in 
the vertical direction only. A concentrated vertical load was applied at the center of the top 
support. 
 
 The elastomeric layers were discretized using two different finite element meshes to 
study the sensitivity of the results to the size of the finite elements. Mesh 1 contained 

mm25.15.2 ×  solid elements (a total of 640 elements for each elastomeric layer) whereas Mesh 
2 employed finer elements of mm12×  (1000 elements per elastomeric layer). The aspect ratio 
of elements for both meshes was 2 . A difference of less than 0.3% was found in the stress 
values along the length of the elastomeric layers. Therefore, Mesh 1 was selected in this study. 
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elastomeric layer located at the mid-height of the isolator. The normal stresses xσ  or zσ in these 
figures were calculated by the finite element analysis and the internal pressure p  was evaluated 
by the pressure solution. All stress components in Figs. 4a to 4d were normalized to the mean 
vertical pressure of MPapm 3= . In addition, due to symmetry, stress values are shown over the 
half width of the elastomer layer.  
 
 A key assumption in the pressure solution is that both horizontal and normal stresses are 
equal to the internal pressure p given by Eq. 5. The accuracy of the pressure solution is highly 
dependent on the validity of this assumption. Figure 4a indicates that due to the significant in-
plane flexibility of the fiber reinforcement in an isolator with 10/ =Gtk f , the distribution of 

normal stresses xσ and zσ along the half width of the elastomeric layer are significantly different 
and the internal pressure p , calculated by the pressure solution does not match either xσ or zσ
(See Fig. 4a). Therefore, the pressure solution in this particular case would not provide a good 
estimate of the isolator’s vertical stiffness. Given the applied mean average pressure of

MPapm 3= , the effective vertical frequency of the FREIs with Gtk f /  values of 10 and 100 
were calculated to be 2.7 Hz, and 5.3 Hz, respectively. However, since these values are not 
sufficiently large for typical seismic isolation applications, FREIs with Gtk f /  values of 10 and 
100 are deemed impractical. 
   
 According to Fig. 4b for an isolator with 100/ =Gtk f , although the distributions of all 

stress components of xσ , zσ and p are fairly consistent, the numerical values are not in very close 
agreement. Therefore, for this isolator, the pressure solution would not provide completely 
accurate result.  
 
 As shown in Figs. 4c and 4d for the isolators with 1000/ ≥Gtk f , excellent agreements 

between both the distributions and between the numerical values of stresses xσ , zσ , and p  are 
observed. As mentioned previously in this section, in this Gtk f /  range, the isolators’ effective 
compression moduli calculated by the pressure solution differ by less than 5%.  
 
 Figures 5a to 5d contain zzσ stress contours plotted on the deformed shape of the isolators 
with Gtk f /  values ranging from 10 to 410 . As shown in Figs. 5a, 5b, and Fig. 2, the FREIs with 

1000/ <Gtk f  undergo relatively large vertical deflections and lateral expansions.  
 
  Figures 6a and 6b compares the distributions of normal stresses along the half width of 
the first elastomeric layer located at the bottom of the isolator (R1) with that of the elastomeric 
layer R6 located at the mid-height of the isolator.  
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material properties. However, the in-plane tension rigidity of the fiber reinforcement in the 
isolators was varied. The ratio of in-plane tensile stiffness of the fiber reinforcement to the shear 
stiffness of the elastomeric layer, namely, Gtk f / , was used as an index to differentiate the 
isolators under consideration. The shape factor, S , defined as the plan area of a single 
elastomeric layer to its load free perimeter area, was 10 for all isolators studied. At this S value 
the “pressure solution”, which accounts for the stretching of fiber reinforcement layers, is 
thought to provide sufficiently accurate solutions.  
 
 Analysis results indicate that, for FREIs with fiber reinforcement of relatively low 
stiffness (i.e., 1000/ <Gtk f ), results of the pressure solution and the finite element are 
significantly different. For isolators with intermediate stiff fiber reinforcement, results of the 
“pressure solution” were found to be reasonably accurate. Excellent correlation between the two 
methods was obtained for the isolators with 410/ ≥Gtk f . Although the employed pressure 
solution accounts for the stretching of fiber reinforcement in the FREIs, its accuracy is not 
independent of the in-plane flexibility of the reinforcement layers. 
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