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ABSTRACT

Fiber reinforced elastomeric isolators (FREIs) can be effectively used for
seismic mitigation of structures. In contrast to conventional steel reinforced
elastomeric isolators (SREIs), FREIs are significantly lighter in weight, and can
be fabricated in a cost-effective manner. Unlike SRElISs, the reinforcement layers
in FREIs are flexible in extension and have no bending rigidity. As a result, the
response characteristics of FREIs are different, and in general more complex than
those corresponding to SREIls. Due to the fiber flexibility, the theoretical
approach employed in the stiffness analysis of SREIs cannot be directly extended
to FREIs. Analytical closed-form techniques for stiffness solution of FREIs under
vertical pressure have been presented in the literature. There is a need to compare
these solutions with more rigorous numerical techniques. In this paper, a finite
element approach has been employed to investigate the static response of a
strip FREI under a compressive vertical load. A hyperelastic model has been used
for the rubber material in the finite element code. Results of the finite element
analysis, including compression stiffness and stress distributions in the
elastomeric layers, have been compared with those predicted by the closed form
analytical solution.

Introduction

Fiber reinforced elastomeric isolators (FREIs) consist of alternating bonded layers of
elastomer and fiber reinforcement. In contrast to steel reinforced elastomeric isolators (SREIS),
FREIs are significantly lighter in weight and potentially more cost effective if fabricated through a
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mass production manufacturing technique.

Previous research has confirmed the effectiveness of FREIs in seismic isolation of typical
low-rise structures (Toopchi-Nezhad et al. 2009). The role of fiber reinforcement in a FREI is
primarily to provide vertical stiffness by limiting the lateral bulging of the elastomeric layers
when the isolator is subjected to vertical compressive loads. It should be noted that the
reinforcing steel plates play the same role in conventional SREIs. However, unlike the steel
reinforcement in a SREI, which is rigid in elongation and has significant bending rigidity, fiber
reinforcement in a FREI is flexible in extension and has negligible bending rigidity. Therefore,
the response characteristics of a FREI in both the vertical and horizontal directions are
significantly different than a corresponding SREI. Consequently, current analytical solutions
derived for SREIs cannot be directly extended to FREISs.

The “pressure solution” is a commonly used analytical approach in predicting the vertical
stiffness of conventional SREIs (Kelly 1997). A modified version of this analytical approach
which accounts for the in-plane tension flexibility of the fiber reinforcement has been developed
for the vertical stiffness evaluation of FREIs (Kelly 1999). This paper presents a detailed
comparison between the results of the “pressure solution” and finite element analysis by
investigating the vertical stiffnesses of infinitely long strip FREIs under constant compressive
load. The main research objective is to verify the accuracy of the “pressure solution” in vertical
stiffness analysis of strip FREIs reinforced with fiber reinforcement layers of different in-plane
tensile rigidity. The physical and material properties of the elastomeric layers are identical for all
FREIs considered in this study.

Pressure Solution

The “pressure solution” (Kelly 1997) is commonly used for stiffness analysis of
conventional SREIs under vertical compressive loads. This method assumes that the elastomeric
material in the isolator is linear elastic. Additionally, as an elastomeric layer in a SREI is
laterally confined by the rigid steel reinforcing plates, the deviatoric component of normal
stresses in the elastomer is neglected. Therefore, noting the coordinate system shown in Fig. 1,
the stress state in an infinitely long elastomeric layer is characterized by o ~o_ = p (where, p

is an internal pressure), andz_ = 0. The pressure pis obtained by solving a partial differential

equation resulting from the equilibrium of stresses and the constraint of incompressibility in the
elastomer.

The “pressure solution” approach has been also employed in vertical stiffness analysis of
FREIs (Kelly 1999). However, the solution has been modified to account for the stretching of
fiber reinforcement layers, which cannot be neglected in the analysis. Figure 1 shows the sketch
of a single elastomeric layer of width 2a and thickness ¢, which is bonded between two
reinforcement layers forming an infinitely long rectangular pad. In a typical elastomeric isolator

of plan area A consisting of » pads with a total thickness of elastomeric layers of 7. =nt¢, the
vertical stiffness, K, is defined as (Kelly 1997)
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In Eq. 1, E,, the effective compression modulus of the strip FREI, using “pressure solution”
approach is given by (Kelly 1999, Tsai and Kelly 2002):
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where, a is half the isolator’s width, ¢ is the thickness of the elastomeric layer, S =a/t reflects
a shape factor index, G is shear modulus of the elastomer, and &, is the in-plane tension

stiffness of the fiber reinforcement, which is defined based on E, (Young’s modulus), ¢,
(thickness), and v, (Poisson’s ratio) as follows

k,=Et, [0-v,) 4)

Equation 2 is expected to be reasonably accurate for FREIs having shape factors ranging
between 5 and 15 (Kelly 2002). It should be noted that for conventional strip SREIs, the
“pressure solution” leads to an effective compression modulus of E, =4GS? (Kelly 1997).

The distribution of internal pressure, p, along the width of the FREI is given by Kelly (1999) as:
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where o represents the vertical deflection of a single elastomeric layer in the isolator.
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Figure 1. Sketch of an infinitely long rectangular pad



The Strip FREIs Considered in this Study

In order to verify the accuracy of the “pressure solution” and to study the role of fiber
reinforcement in the vertical stiffness of FREIs, six isolators with different kf/Gt values were

investigated. The ratio of k,/Gt indicates the relative in-plane tension stiffness of the fiber
reinforcement to the shear stiffness of the elastomeric layer. The values for & /Gt selected in

this study were10, 10%,10°, 10*, and 10°. Each isolator contained eleven 10mm thick rubber
layers interleaved with ten fiber reinforcement layers. All isolators were subjected to a mean
vertical pressure of p. =3MPa. The material properties of fiber reinforcement were
characterized with £, =137GPa and v, =0.2. Shear modulus of the elastomer was assumed to

be G =0.4MPa. The width and height of the individual elastomeric layers in all of the isolators
were 200mm and 10mm, respectively. This leads to an identical shape factor of S =10 for all of
the isolators which falls within the accepted range of shape factors for application of the pressure

solution (Kelly 2001). Therefore, for the isolators investigated, the pressure solution results can
be reasonably compared with the finite element solutions.

Finite Element Approach

The finite element analysis was carried out using Abaqus software (Abaqus Theory
Manual 2007). Nonlinear elasticity of the elastomeric material was simulated using a Neo-
Hookean hyperelastic material model provided in Abaqus. Given the 0.4 MPa shear modulus of

the elastomer and its bulk modulus of 2000MPa, the Neo-Hookean coefficients were calculated
to be ¢, =0.2, and D, =0.001. The elastomeric layers were discretized using 4-node bilinear,

plane strain, quadrilateral, hybrid, constant pressure solid elements called CPE4H. The fiber
reinforcement was modeled using 2-node linear 2D truss elements called T2D2 (Abagus Theory
Manual 2007).

Two rigid contact supports were defined at the top and bottom of the isolators. All of the
degrees of freedom of the bottom support were fixed. The top support was allowed to move in
the vertical direction only. A concentrated vertical load was applied at the center of the top
support.

The elastomeric layers were discretized using two different finite element meshes to
study the sensitivity of the results to the size of the finite elements. Mesh 1 contained
2.5x1.25 mm solid elements (a total of 640 elements for each elastomeric layer) whereas Mesh
2 employed finer elements of 2x1 mm (1000 elements per elastomeric layer). The aspect ratio

of elements for both meshes was 2. A difference of less than 0.3% was found in the stress
values along the length of the elastomeric layers. Therefore, Mesh 1 was selected in this study.



Analysis Results and Discussion

In the finite element analysis conducted in this study, the applied vertical load was
linearly increased from zero to its target value corresponding to a mean vertical pressure of

p,, =3MPa. Figure 2 shows the relationship between compressive stress (mean pressure) and

vertical strain. The vertical strain is evaluated by dividing the total vertical deflection, A, by the
total thickness of elastomeric layers in the isolator, i.e., . =110mm. As can be seen in Fig. 2, for

k,1Gt <1000, vertical stiffness of the isolator increases significantly with an increase in the in-
plane stiffness of the fiber reinforcement. However, for &,/ Gz >1000 the rate of increase in the
isolator vertical stiffness rapidly diminishes and at &, /Gt =10,000, additional increase in the in-

plane stiffness of the fiber reinforcement has no appreciable influence on isolator vertical
stiffness.
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Figure 2. Relationship between mean vertical pressure, p, ,and vertical strain, A/¢_, for
different values of &, /Gt

A comparison between analytical (Eq. 2) and numerical (finite element) values of the
isolators’ effective compression moduli can be found in Fig. 3. Isolator compression moduli in
this figure are normalized to the compression modulus of a corresponding isolator with infinitely
rigid reinforcement layers. As can be seen in Fig. 3 the plotted curves follow a similar trend
although some discrepancies exist. The maximum discrepancy between the two methods occurs

at k,/Gt=10 where the pressure solution underestimates £, by 63%. This underestimation
decreases to 24% and 5% for k, /Gt values of 100 and 1000, respectively. The difference

between the pressure solution and finite element results at k,/Gr>10,000 is less than 2%
which indicates excellent correlation between the two methods.

The thickness of steel plates in a SREI is typically not less than3mm. If the fiber
reinforcement layers of the strip isolator considered in this study were replaced with steel plates
of 3mm thickness, the relative in-plane stiffness of the steel reinforcing plates to shear stiffness

of the elastomeric layers (i.e., k,/Gt) would have been approximately 1.65x10°. For such a



case, £ /4GS?would be very close to 1. Consistently, £ /4GS? in a FREI approaches unity as
k,1Gt values become quite large (see Fig. 3). Results of the finite element analysis indicate that

at k,/Gt of 10* and 10°, the ratio of E,/4GS?reaches 0.94and0.98, respectively, which is

close to unity.
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Figure 3. Variation of isolator effective compression modulus with k. /Gt
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Figure 4. Results of the pressure solution (PS), and finite element (FE) analysis; distribution of
the normalized stresses along the half width of an elastomeric layer located at the
mid-height of the isolators with &, /Gt values of ; (a) 10 ; (b) 10°; (c) 10°; (d) 10°*

Figures 4a to 4d show the distribution of normal stresses along the width of the



elastomeric layer located at the mid-height of the isolator. The normal stresses o, or o, in these
figures were calculated by the finite element analysis and the internal pressure p was evaluated
by the pressure solution. All stress components in Figs. 4a to 4d were normalized to the mean
vertical pressure of p, =3MPa. In addition, due to symmetry, stress values are shown over the

half width of the elastomer layer.

A Kkey assumption in the pressure solution is that both horizontal and normal stresses are
equal to the internal pressure p given by Eq. 5. The accuracy of the pressure solution is highly

dependent on the validity of this assumption. Figure 4a indicates that due to the significant in-
plane flexibility of the fiber reinforcement in an isolator with &, /Gt =10, the distribution of

normal stresses o and o, along the half width of the elastomeric layer are significantly different

and the internal pressure p, calculated by the pressure solution does not match either o or o,

(See Fig. 4a). Therefore, the pressure solution in this particular case would not provide a good
estimate of the isolator’s vertical stiffness. Given the applied mean average pressure of
P, =3MPa, the effective vertical frequency of the FREIs with k,/Gt values of 10 and 100

were calculated to be 2.7 Hz, and 5.3 Hz, respectively. However, since these values are not
sufficiently large for typical seismic isolation applications, FREIs with &, /Gt values of 10 and

100 are deemed impractical.

According to Fig. 4b for an isolator withk /G =100, although the distributions of all

stress components of o, o and p are fairly consistent, the numerical values are not in very close

agreement. Therefore, for this isolator, the pressure solution would not provide completely
accurate result.

As shown in Figs. 4c and 4d for the isolators with &, /Gt >1000, excellent agreements
between both the distributions and between the numerical values of stresses o, ,o,, and p are
observed. As mentioned previously in this section, in this &, /Gt range, the isolators’ effective
compression moduli calculated by the pressure solution differ by less than 5%.

Figures 5a to 5d contain o, stress contours plotted on the deformed shape of the isolators
with &, /Gt values ranging from 10 to 10*. As shown in Figs. 5a, 5b, and Fig. 2, the FREIs with
k1 Gt <1000 undergo relatively large vertical deflections and lateral expansions.

Figures 6a and 6b compares the distributions of normal stresses along the half width of
the first elastomeric layer located at the bottom of the isolator (R1) with that of the elastomeric
layer R6 located at the mid-height of the isolator.
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Figure 5. Stress contours for o, (MPa) plotted on the deformed shape of the isolators with
k,1Gt values of; (a)10; (b)107; (c)10%; and (d)10*; only half width of the isolators
are shown due to symmetry
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Figure 6. Distribution of vertical and horizontal stresses of o, and o, along the half width of

elastomeric layers R1 and R6 located at the bottom and mid-height of the isolators,
respectively; (a) k,/Gt=10; (b) k, /Gt =10

According to Fig. 6a for the isolator with k,/Gt=10, the stress distribution in

elastomeric layer R1 is significantly different than layer R6. This is expected as there was
considerable difference in the deformation patterns of layers R1 and R6 in Fig. 5a. As &, /Gt



increases, the difference in the stress distribution becomes negligible. At %, | Gt >10°, the stress

distributions for both horizontal stress o and vertical stress o are identical regardless of the

location of the elastomeric layer in the isolator. This finding indicates agreement with the basic
assumptions made with the pressure solution.

The distributions of normalized stresses o_/ p, and o/ p,through the thickness of the

elastomeric layer R6 located at the mid-height of the isolators are shown in Figs. 7a to 7d for
various k,/Gt values. The stress values are shown for both the mid-length (isolator’s middle),

and the edge (isolator’s edge) of the elastomeric layer. Inspection of these figures shows that the
stresses vary significantly over the thickness of the elastomer at the edge of the isolator.
However, at the middle of the elastomeric layers the stress remains almost constant with
negligible variation through the elastomer thickness.
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Figure 7. Variation of stresses o, and o, over the thickness of elastomeric layer R6 located at
the mid-height of isolators with &,/ Gt values of ; (a) 10; (b) 10% (c) 10% and (d) 10*;
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Summary and Conclusions

The stress distributions and vertical stiffnesses of five different strip FREIs under a
constant vertical compressive load were evaluated using a simplified analysis known as the
“pressure solution”. These were subsequently compared with finite element analysis results. A
Neo-Hookean hyperelastic material model was used for the elastomeric layers of the isolators in
the finite element analysis. The isolators were identical in terms of physical dimensions and



material properties. However, the in-plane tension rigidity of the fiber reinforcement in the
isolators was varied. The ratio of in-plane tensile stiffness of the fiber reinforcement to the shear
stiffness of the elastomeric layer, namely, k, /G, was used as an index to differentiate the

isolators under consideration. The shape factor, S, defined as the plan area of a single
elastomeric layer to its load free perimeter area, was 10 for all isolators studied. At this S value
the “pressure solution”, which accounts for the stretching of fiber reinforcement layers, is
thought to provide sufficiently accurate solutions.

Analysis results indicate that, for FREIs with fiber reinforcement of relatively low
stiffness (i.e., k, /Gt <1000), results of the pressure solution and the finite element are

significantly different. For isolators with intermediate stiff fiber reinforcement, results of the
“pressure solution” were found to be reasonably accurate. Excellent correlation between the two

methods was obtained for the isolators with &,/ Gt >10*. Although the employed pressure

solution accounts for the stretching of fiber reinforcement in the FREIs, its accuracy is not
independent of the in-plane flexibility of the reinforcement layers.
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