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ABSTRACT 
 

 Because a base isolated structure is usually a long-period dynamic system, an 
excessive response can be easily induced by a near-fault earthquake that 
possesses a long-period pulse-like waveform. To alleviate this problem, a rocking 
bearing that has a variable isolation frequency is proposed in this study. The 
proposed rocking bearing has an articular (ball-and-socket) joint on the top and a 
rocking surface with a variable curvature on the lower part. The articular joint is 
connected to the super-structure through a mounting plate. In an earthquake, the 
rocking surface of the bearing will rock back-and-forth on a base plate that is 
mounted on the ground or the foundation of the structure. By properly selecting 
the bearing’s geometric parameters, the isolation stiffness of the proposed rocking 
bearing can be a function of the bearing displacement. As a result, the bearing’s 
isolation frequency becomes variable and can be determined by the geometric 
parameters, exclusively. In this study, the bearing’s rocking surface is defined by 
a six-order polynomial function, so the restoring force of the bearing exhibits a 
softening behavior followed by a hardening behavior. This mechanical behavior 
aims to suppress the maximum structural acceleration and isolator displacement, 
simultaneously. By comparing with the response of a conventional FPS isolation 
system, the isolation performance of the rocking bearing with its rocking surface 
defined by the six-order polynomial is investigated numerically in this study. 

 

Introduction 

 A typical seismic isolation system usually has a flexible layer to uncouple the ground 
motion from the super-structure. In order to reduce the residual base displacement of the isolated 
structure after an earthquake, the flexible layer must incorporate a resilient mechanism. The 
resilient mechanism will produce the isolation stiffness, which is usually designed much lower than 
the super-structural stiffness. As a result, a structure isolated by a conventional seismic isolation 
system is usually a long-period structural system with a constant isolation frequency. It has been 
shown that conventional isolation systems can be very effective in mitigating the seismic responses 
of structures subjected to regular earthquakes (Naeim and Kelly 1999). Nevertheless, recent studies 
have also revealed that a conventional isolation system may induce an excessive isolator 
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displacement in a near-fault earthquake that contains a long-period pulse wave component (Jangid 
and Kelly 2001, Lu et. al. 2002). This long-period pulse component, whose pulse period can range 
from 1.4 to 7 seconds, can be very detrimental to low-frequency structural systems, such as a base 
isolated structure (Hall 1995).  

 In order to reduce the excessive isolator displacement induced by a near-fault earthquake, 
in this paper, a variable-frequency rocking bearing called a polynomial rocking bearing (PRB) is 
proposed. Since the rocking surface of the PRB is defined by a six-order polynomial, the isolation 
frequency provided by the PRB becomes a function of the isolator displacement, rather than a 
constant. The feasibility and isolation performance of the PRB will be investigated in this paper by 
using a numerical method.  

 

Figure 1.    The variable-frequency rocking bearing installed under a structure footing. 

 

Figure 2.     Free body diagram of the rocking bearing. 

Theory of Variable-Frequency Rocking Bearing  

Configuration of the rocking bearing 

 Fig. 1 shows the proposed rocking bearing installed under the structure footing. As shown 
in the figure, the rocking bearing has an articular (ball-and-socket) joint on the top and a rocking 
surface with a base plate on the lower part. The articular joint is connected to the super-structure 
through a mounting plate, while the base plate is mounted on the ground or the foundation of the 
structure. In an earthquake, the rocking surface of the bearing will rock back-and-forth on the base 
plate, thus the transmitted ground motion onto the super-structure can be mitigated. The rocking 
surface, which is usually axially symmetric, must be concaved and may have a variable curvature.  
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Restoring force of the rocking bearing 

 The mechanical behaviour of an isolator usually can be characterized by its force-
displacement relation. Here, the force and displacement mean the isolator horizontal shear and 
the isolator displacement, respectively. In this subsection, a formula describing the force-
displacement relation for a rocking bearing with variable frequency will be given.  Fig. 2 shows 
the free-body-diagram of the rocking bearing. In Fig. 2, there are two coordinate systems: x-y 
and X-Y coordinates. The x-y system is a fixed coordinates, while the X-Y system is a moving 
coordinates that is attached to the bearing and will rock along with the bearing. Also shown in 
Fig. 2, the rocking bearing has two major design parameters: the bearing height h and the 
geometric function G(X) of the rocking surface. For the convenience, the function G(X) is 
usually expressed in terms of the X-Y coordinates, i.e., Y=G(X). 

 In Fig. 2, there are four forces and one moment Mf   applying on the bearing. These forces 
or moment are defined as follows: P is the vertical load; N is the normal force applied on the 
contact point A of the rocking surface; F is the friction force applied on point A; U denotes the 
horizontal shear force that interacts between the bearing and the super-structure; Mf   represents 
the moment caused by friction in the articular joint. Note that the shear U is equivalent to the 
horizontal seismic force transmitted to the isolated structure. The shear U of the rocking bearing 
can be derived by taking the moment equilibrium equation about the contact point A.  The 
derived total shear U  can be written in the following form 

fr uuU +=    (1) 

The terms ru and uf in Eq. 1 represent the restoring force and the friction force components in the 
total shear U, respectively.  uf  is contributed by the friction moment Mf  in  the bearing, while ru  
depends on the geometry of the bearing’s rocking surface. The detail derivation of ru  and uf  
were given in the reference (Lu et. al. 2009). While the derived uf  will be discussed later, the 
restoring force ru  can be written explicitly as 

rr uPu = , where 
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In the above equations, Xa is the X-coordinate of the contact point A in X-Y coordinate system 
(see Fig. 2), and )X(G′ denotes the first derivative of G(X) about variable X. Note that in Eq. 2 

ru  represents the normalized restoring force with respect to the bearing’s vertical load P, since 
Puu rr /= . Eq. 2 demonstrates that the restoring force ru of the rocking bearing is a function of 

Xa, G(X) and h, and is proportional to the vertical load P. Note that as shown in Fig. 2, Xa is not 
the base displacement of the superstructure. The base displacement (or isolator displacement) 
should be defined as the horizontal displacement xb of point B  in Fig. 2. Point B is the center of 
the articular joint. Furthermore, because the horizontal displacement of point B is equal to the x-
coordinate of point B in the x-y coordinate system, it can be derived that  
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Investigating Eq. 2 and 3, one should realize that it is difficult to directly express the restoring 
force ru  as an explicit function of the isolator displacement xb. However, the relationship 



between ru  and xb does exist and can be established through the intermediate variable Xa. A 
numerical tool is generally required, when the relation curve of ru  and xb is to be depicted. 

Equivalent horizontal friction force of the rocking bearing 

 As mentioned previously, the friction moment Mf  in the articular joint of the bearing 
causes the equivalent horizontal friction component uf  shown in Eq. 1. At any time instant, the 
magnitude of uf  will rely on the current status of the bearing motion, which has two motion 
states, i.e., rocking and stick (non-rocking) state. In the rocking state, the magnitude of uf  will be 
equal to its maximum value denoted by max,fu , while in the stick state,  uf  will be determined by 
the dynamic response of the isolated structure and its magnitude should not be greater than 

max,fu .  uf  can be expressed as 

max,ff uu <  (for stick state) (4.a) 

max,ff uu =  (for rocking state)    (4.b) 
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where  μ  represent the material friction coefficient between the ball head and ball socket of the 
articular joint, and r denotes the radius of the ball head (see Fig. 1). Eq. 5 has shown that the 
maximum friction force max,fu  is also a function of Xa-coordinate. The complete derivation of Eq. 
5 is given in the reference (Lu et. al. 2009).  

Tangential isolation stiffness and isolation frequency 

 The tangential restoring stiffness kr  (or called instantaneous stiffness), which is defined 
as the rate of change of the restoring force, of the proposed bearing can be computed by taking 
the derivative of ur with respect to the base displacement xb, i.e., 
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In the last equation, ur defined in Eq. 2 has been applied. Eq. 6 implies that the isolation stiffness 
is not a constant but a function of the base displacement xb, since )(XX baa x= . Furthermore, by 
using Eq. 6, the tangential isolation frequency bω  of the isolated structure can be computed by 
the following equation 
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where M is the mass of the isolated super-structure. Notably, in Eq. 7 it is assumed that the 
super-structure behaves like a rigid body. Moreover, provided that the vertical load P, which is 
due to the structural weight, can be expressed as gMP = , one may use this equation in Eq. 7 
and obtains  
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From Eq. 8, it is evident that isolation frequency of the bearing is not a constant, but is an 
implicit function of the base displacement xb and the geometric function G(X), since ru ′  is a 
function of G(X) (see Eq. 2). It is for this reason that the proposed bearing is called the variable-
frequency rocking bearing. Eq. 8 also demonstrates that the isolation frequency of the PRB is 
completely independent from the structural mass M. The variation of the isolation frequency 
gives the adaptability of the isolated system. By properly selecting the geometric function G(X) 
of the sliding surface, the isolated system may possess favourable dynamic characteristics in 
different base displacement. 
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 (a) Normalized restoring force (b) Isolation period 
Figure 3.     Comparison of FPS and PRB mechanical properties. 

Polynomial Rocking Bearing (PRB) 

 In order to improve the isolation performance in near-fault earthquakes, in this study, the 
following sixth-order polynomial function has been chosen to define the geometry function G(X) 
of the bearing’s rocking surface:  
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where c1, c2 and c3 are three constant polynomial coefficients. Because the bearing’s shape is 
defined by the above polynomial, it is called a Polynomial Rocking Bearing (PRB) in this study. 
By properly choosing the values of the three polynomial coefficients c1, c2 and c3, the restoring-
force function ru  of the PRB can possess a desired feature.  

 When the values of the height h and the coefficients c1, c2 and c3 of the PRB are as given 
in Table 1, Fig. 3 shows the normalized restoring force ru  and the isolation period bT  ( bωπ /2= ) 
of the PRB as a function of the base displacement xb. In addition, for the purpose of comparison, 
the restoring force and isolation period of the friction pendulum system (FPS) isolator, whose 
parameter values are given in Table 1, are also depicted in Fig. 3. The FPS isolation system is a 
very commonly used sliding isolation system (Mokha 1991). As shown in Fig. 3(a), the PRB 
with the chosen coefficient values has a softening section followed by a hardening section, when 
the base displacement xb increases. The isolation stiffness of the PRB is decreased in the 
softening section, while in the hardening section the stiffness is increased.  

 The purpose of the softening section is to mitigate the acceleration response in a smaller 
base displacement; while the purpose of the hardening section is to suppress the base 
displacement for a sever earthquake for the safety reason. In brief, the softening and hardening 
sections aim to control the structural acceleration and base displacement, respectively. Moreover, 
if G(X) is substituted from Eq. 9 in Eq. 2 and 5, one is able to express the restoring force ur and 
the maximum friction max,fu of the PRB in terms of the polynomial coefficients c1, c2 and c3. 



Table 1.    Parameters of PRB and FPS isolators used in numerical simulation. 

PRB Parameter Value FPS parameter Value 
Equivalent horizontal initial 
friction coefficient 0μ  

0.1  Sliding friction coefficient FPSμ  0.1 

Polynomial coefficient 
of rocking surface 

c1 30 (1/m5) Isolation period FPST  2.5s 
c2 0.027 (1/m3) 
c3 1.145 (1/m) Isolation frequency FPSω  0.4Hz 

Bearing height h 0.25 m  
Radius of ball head r 0.044 m 

Table 2.     Superstructures parameters used in simulation. 

Parameter Value Parameter Value 
Structure mass（ms） 300 ton Damping ratio（ζs） 5 % 
Base mass（mb） 100 ton Stiffness（ks） 3.289×104 kN/m
Natural frequency (ωs) 1.67 Hz Damping coeff.（cs） 314  kN-s/m 
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Figure 4.     Mathematical model for a structure isolated by the PRB 

Harmonic Steady-state Responses of Polynomial Rocking Bearing (PRB) 

Mathematic model and numerical method 

 In following section, the performance of a structure isolated by the PRB and subjected to 
ground accelerations with near-fault characteristics will be evaluated by a numerical method.  
Fig. 4 shows the mathematical model of a structure isolated by the PRB bearings. To simplify 
the problem, the super-structure in Fig. 4 is modelled as a single-DOF system, so the study can 
focus on the PRB isolation performance. in Fig. 4, the symbols xs and xb denotes the relative-to-
the ground displacements of the base and super-structure, while ms and mb represent the 
corresponding mass. In addition, as shown in Fig. 4, the friction force uf and the resorting force 
ur of the PRB is modelled by a friction element and a nonlinear spring, respectively.  The 
equation of dynamics for the model of Fig. 4 can be written in a state-space form: 

)())()(()()( txtututt gfr &&& EBzAz +++=    (10) 

where A denotes the system matrix; T
bsbs xxxxt },,,{)( &&=z is the state variables; )(txg&&  

represents the ground acceleration; B is the isolator distribution matrix; E is the excitation 
distribution matrix. Note that in Eq. 10 both nonlinear terms )(tur and )(tu f  have been moved to 



the right-hand side of the equation. In order to deal with these nonlinear forces more efficiently, 
in this study a numerical procedure developed based on the discrete-time state-space formulation 
and the shear-force balanced method (Lu et. al, 2006) was adopted for the analysis of the PRB 
isolated structure.  

 To be used in the numerical study of this paper, Table 2 lists the parametric values of the 
isolated structure, while Table 1 lists the parametric values of the PRB bearing. In addition, 
Table 1 also lists a FPS whose dynamic responses will be used for comparison purpose. Table 1 
shows that the initial friction coefficient μ0 of the PRB is chosen to be the same as the friction 
coefficient μ of the FPS. Table 2 also shows that the isolated structure has a natural frequency of 
1.67 Hz representing a low-rise building.  
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 (a) Base displacement (b) Structural acceleration 
Figure 5.     Amplitudes of PRB and FPS harmonic steady-state responses (PGA = 0.4g) 
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Figure 6.     Ground accelerations used in simulation (PGA = 1g). 

Comparison of harmonic responses of PRB and FPS 

 In order to investigate the dynamic behavior of the PRB under different excitation 
frequencies, a harmonic ground acceleration tgtx gg ωsin4.0)( =&&  (where gω denotes the 
excitation frequency) is imposed to the isolated system in this subsection. Based on the 
simulated results, Fig. 5 compare the amplitudes of the steady-state responses of the PRB and the 
FPS isolation systems, as a function of the excitation frequency gω . Several observations can be 
made from Fig. 5: (1) In Fig. 5(a), as expected, a significant resonant response is occurred in the 
base displacement of the FPS at the isolation frequency around 0.4 Hz. On the other hand, no 
obvious resonant response is observed for the base displacement of the PRB system.  This 
implies that the base displacement of the PRB will not be amplified by a low-frequency ground 
excitation. (2) In Fig. 5(b), the resonance of structural acceleration due to the vibration mode of 
the super-structure at 1.67 Hz has been mitigated in both PRB and FPS isolation cases. However, 
for the FPS, the resonance of structural acceleration still occurs around the isolation frequency of 



0.4 Hz. On the other hand, for the PRB, Fig. 5(b) demonstrates the acceleration resonant 
response of the PRB is mitigated, although its acceleration response has a higher value in the 
frequency range between 0.2-0.5 Hz than in other frequency range.  
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Figure 7.     Comparison of FPS and PRB responses for El Centro Earthquake (far-field, PGA = 0.4g) 

 
0 10 20 30 40

-0.2

-0.1

0

0.1

0.2

0.3

-0.3

Isolator Displacement

Time (s)

D
is

pl
ac

em
en

t (
m

)

 

 

PRB
FPS

 
0 10 20 30 40

-6

-4

-2

0

2

4

6
Superstructure Acceleration

Time (s)

A
cc

el
er

at
io

n 
(m

/s
2 )

 

 

PRB
FPS

 
 (a) Base displacement (b) Super-structural acceleration 
Figure 8.     Compare FPS and PRB responses for Chi-Chi TCU068 Earthquake (near-fault, PGA = 0.4g) 

Seismic Performance of Polynomial Rocking Bearing 

Comparison of FPS and PRB time history responses 

 In this section, two acceleration records measured from real earthquakes will be used as 
the input ground excitations in the numerical study. The detailed information about these two 
earthquakes is given below: (1) the El Centro (S00E) Earthquake, 18 May 1940, peak 
acceleration 0.341g. (2) Chi-Chi  earthquake, station TCU068, 21 September 1999, peak 
acceleration 0.497g. The El Centro earthquake is a famous earthquake record that has been 
widely used in many seismic engineering studies. The Chi-Chi earthquake record was recorded 
by station TCU068 that is near a seismic fault. The waveforms of these two earthquakes are 
shown in Fig. 6. As shown in Fig. 6(b), long-period pulse-like waveforms can be clearly 
observed in the Chi-Chi (TCU068) earthquake. Therefore, in this study the Chi-Chi (TCU068) 
and El Centro earthquake are used to represent a near-fault and a far-field earthquake, 
respectively.  

 Fig. 7 compares the time history responses of the PRB and FPS isolation systems under 
the El Centro (far-field) earthquake, while Fig. 8 compares the responses due to the Chi-Chi 
(near-fault) earthquake. Note that the PGA (peak ground acceleration) of both ground motions 
has been scaled to 0.4g. From these two diagrams, it can be observed that as compared with the 
FPS response, the PRB effectively reduces the maximum base displacement, although its 
structural acceleration is slightly higher than that of the FPS. In particular, Fig. 8(a) shows that 



the base displacement of the PRB is only about 50% of the FPS displacement. Moreover, Fig. 
8(a) also demonstrates that FPS exhibits more obvious oscillation in the base displacement 
response, which is exerted by the long-period pulse component in the Chi-Chi earthquake.  
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Figure 9.     Peak responses of PRB and FPS for different PGA levels (El Centro earthquake, far-field). 
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Figure 10.    Peak responses of PRB and FPS for different PGA levels (Chi-Chi earthquake, near-fault). 

Comparison of PRB and FPS peak responses at different PGA levels 

 Because earthquake intensity is usually unpredictable, it would be beneficial to 
investigate how the PRB performs in an earthquake with different intensities. When the PGA is 
increased from 0.1 to 0.6g, Fig. 9 and 10 compare the peak responses of the PRB and FPS for the 
El Centro (far-field) and Chi-Chi (near-fault) earthquake, respectively. The peak acceleration 
response of an un-isolated (fixed-base) structure is also plotted in Fig. 9 and 10. From these two 
figures, the following observations can be made: (1) Fig. 9(a) and 10(a) show that in either the 
far-field or near-fault earthquake, the PRB is able to effectively reduce the base displacement of 
the isolation system, regardless the PGA level. However, comparing Fig. 9(a) and 10(a) reveals 
that the PRB is particularly effective in suppressing the base displacement induced by the near-
fault earthquake. (2) When compared to the response of the fixed-base structure, Fig. 9(b) and 
10(b) demonstrate that both the PRB and FPS are able to very effectively mitigate the peak 
structural acceleration. For the El Centro (far-field) earthquake with the PGA = 0.6g, the 
acceleration reduction rate for both the PRB and FPS can reach about 80%, while the reduction 
rate is about 50% for the Chi-Chi (near-fault) earthquake with the PGA = 0.6g. (3) When the 
comparison of the acceleration response is made between the PRB and FPS, Fig. 9(b) shows that 
for the far-field earthquake, the PRB and FPS have the same peak acceleration level for a PGA 
below 0.4g, but the PRB induces a slightly higher acceleration response when the PGA level 
becomes larger. On the other hand, Fig. 10(b) shows that for the near-fault earthquake, the PRB 
induces slightly higher acceleration response in most of the PGA range.  



Conclusions 

 In order to improve the seismic isolation performance for earthquakes with near-fault 
characteristics, a variable-frequency rocking bearing called polynomial rocking bearing (PRB) is 
proposed in this study. Since the rocking surface of the PRB is defied by a polynomial function, 
the isolation stiffness and frequency of the PRB system become functions of the isolator 
displacement. The formula that describes the force-displacement relation and isolation frequency 
of the PRB were given in this study. Shown by the formula, the variable isolation frequency of 
the PRB is independent from the weight of the isolated structure and can be designed by properly 
choosing its geometric parameters. When the rocking surface of the PRB is defined by a six-
order polynomial function, the restoring force of a PRB bearing will have a softening behavior 
followed by a hardening behavior, which aim to suppress the peak structural acceleration and 
peak base displacement, respectively. The result of numerical simulation has demonstrated that 
due to the feature of variable frequency, the proposed bearing is able to effectively mitigate the 
resonance effect induced by a low-frequency excitation. The result also shows that as compared 
to the FPS response, the PRB is particularly effective in suppressing the base displacement 
induced by a near-fault earthquake with a long-period pulse, although the structural acceleration 
response may be increased slightly. A comprehensive parametric study may be conducted for the 
PRB in the future, so the structural acceleration response of the PRB can be further improved.   
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