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ABSTRACT 
 

Most current methods for modeling damping in structures assume global linear 
viscous damping, even when nonlinear behavior is present in the structural 
system. While this approach is easy to implement, the results do not accurately 
model the displacement-history dependent damping behavior that is inherent in 
damaged members, nonstructural components and connections. This work 
presents a new method for modeling damping that can account for the 
nonlinearity of damping behavior across the system. In this method damping is 
added to each individual element or connection through the use of ghost elements, 
wherein a variety of damping springs are used to account for energy dissipation. 
In the work presented in this paper, the springs dissipate energy through rotation, 
and phenomenological rules are used to determine the damping moments in the in 
the springs. Two sets of rules are described; evolutionary and microscale.   The 
evolutionary model is based on the concept of nonlinear viscous damping, and the 
microscale model uses experimentally determined energy dissipation 
relationships to model the damping. Although these methods increase 
computational demands for the nonlinear analysis of structures, the versatility of 
the approach allows for modeling a wide range of   behavior that is not possible 
with the traditional global linear viscous damping models.  

  
 

Introduction 
 
 Damping is one of the most important but least understood parameters in the dynamic 
response history analysis of structures. Contributing to the lack of understanding are broad 
uncertainties in identifying the physical damping mechanism and in quantifying the magnitude 
of damping. These uncertainties have led to the development of ad-hoc methods for including 
damping in structural analysis.  Most of these methods are based on the concepts of spatially 
uniform constant linear viscous damping, although it is generally recognized that the principal 
mechanism for damping is not viscous, varies throughout the structure, and changes during the 
response.  
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 The traditional approach to include damping in nonlinear structural analysis is to form a 
damping matrix, C. This matrix is usually formed as a linear combination of mass, M, and 
stiffness, K, as follows 
 
 0 1C a M a K= +  (1) 
 
 This form of C, which is not physically related to any actual damping mechanism in a 
structure, was initially developed to preserve linearity in the system and to allow uncoupling of 
the equations of motion.  It is curious that the method has persisted in the analysis of inelastic 
systems, wherein linearity is not required and modal uncoupling is not practical. 
 
 Regardless of its shortcomings, the damping matrix developed from Eq. 1 works 
reasonably well for lightly damped linear systems.  However, several researchers (Bernal 1994; 
Charney 2008; Chrisp 1980; Hall 2006; Powell 2008) have questioned the validity of Eq. 1 when 
nonlinear analysis is used.  The fundamental concern is that changes in system frequencies can 
result in changes in the effective damping ratios, particularly if the damping matrix is based on 
the initial stiffness of the system.  Most of the suggested  "fixes" for this problem are based on 
refinements to the proportional damping concept (e.g. using instantaneous tangent stiffness 
instead of initial stiffness in Eq.1) and thereby still rely on the concepts of linear viscous 
damping. Ultimately, these fixes are bound to fail, because the fundamental problem has not 
been addressed. 
 
 The remainder of this paper presents two implementations for a new approach for 
modeling damping in nonlinear dynamic analysis.  In each case physical analogues for energy 
dissipation in materials and components are modeled directly and are applied at the material, 
element, or component level.   The first of these two methods is a discrete "evolutionary" model, 
in which the energy dissipation is represented by phenemonological damping elements whose 
deformation field is constrained to be the same as the deformation field for the primary element 
to which they are attached.  A simple nonlinear viscous damping model is used for these 
elements, and together with sets of associated rules, the character of the damping in these 
elements may transform, for example, from linear viscous to Coulomb. The second approach, 
called a microscale approach (because it is applied, in essence, at the micro-material level), is 
based on hysteretic energy dissipation relationships developed by Lazan (1968). 
 

 
Evolutionary Model 
 
 In the proposed model, structural damping is added to each element through rotational 
dampers that are attached to rigid-link ghost elements which are constrained to the structural 
element (Figure 1).  The deformations along the length of the structural element are transformed 
into rotations at the hinges of the rigid-links and into the damping elements. 
 



 
 

Figure 1. Rigid link model with rotational dampers. 
 

  
 The rotational dampers are modeled with a viscous nonlinear damping model described 
by Eq. 2 
 
 ( )df Csign u u α= & &  (2) 
 
Where fd is the force (moment) in the damper, u& is the rotational velocity in the damper, C is a 
coefficient of damping, sign(u& ) is the signum function that returns -1 or 1, and α describes the 
shape of the curve.  Figure 2a illustrates different force velocity relationships that are generated 
by modifying C and α.  The dampers can be modeled as viscous (α = 1.0), may behave similar to 
Coulomb damping (α ≤ 0.2) or provide increased damping as velocity increases (α ≥ 1.0).  Using 
this model, the damping in any structural element can be changed during an analysis by simply 
modifying the values of C and α. 
 
 For any α value other than 1.0, numerical problems arise when velocities are close to 
zero.  When α < 1.0, the effective damping, or tangent, of the curve approaches infinity as the 
velocity approaches zero.  When α > 1.0, the effective damping approaches zero as velocity 
nears zero.  Both cases present convergence problems for dampers when the instantaneous 
velocity is small.  This problem is handled by assuming the force-velocity relationship is linear 
when the velocity is close to zero, less than 0.005 radians per second for instance. 
 
 The effects that C and α can have on the damping of a structural element can be 
illustrated with the free vibration response of a cantilevered column.  The column in this 
example has a length of 144 in., modulus of elasticity of 30,000 ksi, moment of inertia of 1728 
in.4 and mass per unit length of 0.05 kip second squared per inch.  The column has modal periods 
of 0.70 seconds in the first mode and 0.11 seconds in the second mode.  The rigid-link ghost 
column is modeled with three rotational dampers similar to Figure 1, where each damper has 
identical properties. 
 
 Four different force-velocity damping relationships are used: α = 1.5, α = 1.0, α = 0.6, 
and α = 0.2.  Each column is independently deformed into both its first and second mode shapes, 
released, and then allowed to vibrate freely.  The initial deformation is scaled such that the 
displacement at top of the column is one inch in all analyses.  In order to compare results, the 
damping coefficients associated with each value of α are proportioned on the basis of the equal 
energy concept described by Hanson and Soong (2001).  The purpose of this scaling is to use 
damping coefficients such that the energy dissipated per cycle of vibration is equivalent in each 



damper (Figure 2b) for a given frequency and single vibration amplitude.  For this analysis, the 
damping coefficients are calculated using the frequency and maximum damper rotations of the 
first mode.  The damping coefficients associated with each α value are shown in Figure 2. 
 
 

 
 
Figure 2. Linear and nonlinear damping models: (a) damping force vs. velocity and (b) damping 

force vs. displacement. 
 
 Each analysis is performed using a Newmark constant acceleration time stepping scheme. 
 For the nonlinear damping models, the solution at each timestep is solved by iterating on the 
damping forces until an equilibrium force imbalance of 0.1 kips is achieved.  The lateral 
displacements at the top of the column are plotted for all four analyses in Figure 3.  The 
responses in the second mode are separated for clarity. 
 
 For the first eight cycles in the mode 1 response, all three models provide very similar 
damping.  This is because the dampers are calibrated to be equivalent at this amplitude and 
frequency of vibration.  As the vibration amplitude begins to decrease, however, the α = 0.2 
model decays more quickly.  Not surprisingly, the linear model has an exponential decay 
envelope, while the α = 0.2 model has a nearly linear envelope, a property of Coulomb damping. 
 
 In the response of the second mode shape, the differences between the damping models 
are more clearly seen.  The decay envelopes still transition from exponential to linear, but the 
rate of decay of the four models is significantly different.  The models with larger α values damp 
out much more quickly in the second frequency.  Also, the models with higher damping forces in 
the second mode generate vibration in the first mode of the structure, a phenomenon not 
associated with proportional damped systems.  Essentially, the resisting forces from the dampers 
want to force the column to deform in the first mode shape and not the second. 
 
 More insight on the model’s behavior can be gained by looking at the equivalent viscous 
damping ratios of the response.  For each curve shown in the mode 1 response, the equivalent 
damping ratio is calculated between all successive peaks using the logarithmic decrement 



method.  These “instantaneous” damping ratios are plotted against peak height in Figure 4.   
 

 
Figure 3. Lateral column displacements for free vibration in modes 1 and 2. 

 
  
 The figure shows that initially, all four models have nearly the same damping ratio.  As 
expected, the model with viscous dampers maintains a constant damping ratio, while the models 
with α < 1.0 show an increase, and the model with α = 1.5 shows a decrease in equivalent 
viscous damping as vibrations reduce.  At very low vibration, the curves level off, and the 
vibration becomes viscous.  This leveling off is a result of the linearization of the nonlinear 
model at small velocities.   
 

 
 

Figure 4. Equivalent viscous damping ratios. 
  
 
 The evolutionary aspects of the approach is based on rules which may be used to 
transform the damping behavior from one form to another.  For example, in concrete structures, 
the damping is initially quite low and may be represented by linear viscous models.  However, as 



microcracks develop in the member, the effective damping will increase as the energy 
dissipation mechanism changes from viscous to frictional.  However, under repeated cyclic 
deformation the ability of the system to dissipate energy will degrade as the coefficient of 
friction along crack planes is reduced.   One of the goals of the research described herein is to 
develop realistic rules for modeling the evolutionary behavior. 

 
Multiscale Model 

 
 Engineering materials dissipate dynamic energy within their material microstructure.  
The dissipated energy is quantified as the area enclosed by the load-displacement curve (Fig. 5a). 
Hysteretic damping models exist for many common engineering materials, including concrete in 
compression (Madeo 2006) and structural steel (Lazan 1968).  It is the goal of this study to 
demonstrate, for a single degree of freedom system, how experimentally obtained hysteretic 
damping models can be implemented as an alternative to linear viscous damping.   
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Figure 5.  (a) Hysteretic damping and (b) Damping energy per hysteretic cycle for steel 

 
 For a single degree of freedom system, the damped free vibration dynamic equilibrium 
equation at time t is 
 
 0)()()( =++ tftftf sdI         (3) 
 
The dissipated energy from damping is represented as a force fd, which acts in opposition to the 
inertial force, fI.  (The spring force is fs=ku where k is the axial stiffness, AE/L.)  Typically linear 
viscous damping is assumed to derive fd, ie. fd=cu& , where u&  is the velocity and c is an damping 
coefficient derived from experiments.  Viscous damping is independent of the displacement 
amplitude, u, which is inconsistent with experimental observations for structural materials 
(Dowling 2007) and field measurements of damping in full scale structures (Tamura and 
Yoshida 2008).  This inconsistency serves as the impetus for studying material damping laws 
(Fig. 5). 
 
 Ferromagnetic materials such as steel dissipate dynamic energy through atomic 
interaction of their crystalline microstructure.  When the cyclic stresses on a volumetric element 
of a structural component are small relative to the yield stress, magnetoelastic damping is the 
dominant energy dissipating mechanism, resulting from the movement of dislocations and 



sliding of grain boundaries in the crystalline microstructure of steel.  As the stress level increases 
above the proportional limit toward the yield stress, plastic strain damping initiates with the 
slippage of crystal planes, a precursor to gross plastic deformation beyond the yield stress.  The 
quantity of dissipated energy per unit volume of material over a load-deformation cycle, Edv, 
with units of kip·in./in3, is approximated as (Lazan 1968) 
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Note that Eq. 4 has been modified slightly from Lazan’s original equation to provide a 
continuous function for Edv through all stress levels considered.  The variation in Edv with 
applied stress is represented graphically in Fig. 5b, with the peak positive stress in a cycle 
defined as σa, and where σf is the fatigue stress for steel, typically taken as σu/2, where σu is the 
ultimate tensile strength of steel.  The energy dissipated per cycle for the hysteretic model is 
different from a linear viscous model, because the damping is amplitude dependent, i.e. the 
damped energy per load-deformation cycle is dependent upon the applied stress at every unit 
volume of material in a structure.  Lazan’s equation suggests that when the stress is zero on a 
unit volume of material at time t, the instantaneous damping energy dissipated is also zero which 
is consistent with observed material damping (Clough and Penzien 1975).   
 
 Dynamic simulations are typically conducted assuming viscous damping. But what if 
instead a material damping law, i.e. Eq. 4, is used to simulate dynamic response?  A proposed 
methodology employing material damping in lieu of viscous damping is derived herein for 
solving the dynamic response of a damped single degree of freedom system.  An example 
problem ─ the damped axial free vibration response of a (massless) steel bar with mass m at its 
tip (inset of Fig. 5a), is performed to demonstrate the viability of the approach.   
 
 The classical finite difference solution algorithm for the damped free vibration of a single 
degree of freedom is (Chopra 2001): 
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where Δt is the length of time step i.  If the viscous damping force in Eq. (5) is replaced with a 
general instantaneous damping force, fdi, applied at time step i, then: 
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Dynamic response is degraded as fdi is added or subtracted to act against the inertial force, i.e.  



the first term in Eq. 6.   
 The damping force, fdi, and the dissipated energy over the time step, edi, are related 
through the definition of instantaneous internal strain energy (Ugural and Fenster 2003): 
 
 ∫= V dididi dVe εσ  (7) 

 
where σdi and εdi are the stress and strain in a unit volume of material caused by fdi.  For an 
axially loaded bar (see inset of Fig. 5), the cross-sectional area A is constant, σdi=fdi /A and 
εdi=σdi/E, resulting in: 
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The instantaneous damping energy is assumed equivalent to the energy dissipated over Δt in a 
hysteretic cycle with period Tn:  
 

 ∫=
V dvi
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di dVE
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The quantity Edvi is calculated at each time step with Eq. 4 and the stress at each time step, σai.   
For the case of the vibrating axial bar with a constant cross-section, Eq. 9 simplifies to: 
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Combining Eq. 10 and Eq. 8 and solving for fdi of the axially vibrating bar: 
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 The damped free vibration response for a steel bar with cyclic natural frequency of 10 Hz 
(ωn=62.8 rad/sec) is presented in Fig. 6a.  Two initial displacements corresponding to axial 
stresses ratios of σ(0)/σf=0.10 and σ(0)/σf=0.50 are considered.  The responses vary based on the 
initial displacement (stress), demonstrating that the influence of damping is stress amplitude 
dependent when employing the hysteretic damping model in Eq. 4.  The free vibration response 
at an initial stress amplitude of σ(0)/σf =0.10 is most consistent with the viscous damping free 
vibration response curve assuming a viscous damping ratio for steel of ξ=0.005.  The similarity 
between the viscous damping and experimentally based hysteretic damping response occur even 
though the damping force fd loops (Fig. 6b) are shaped differently.  The fd vs. u response for the 
material damping law resembles a bow tie, with zero damping occurring when the bar 
displacement is zero. Also note that the distance between the fd loops varies nonlinearly as axial 
stress in the bar decreases for the hysteretic model (consistent with Fig. 6b), whereas fd decreases 
at a constant rate for viscous damping. 
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Figure 6 (a) Free vibration response is amplitude dependent with the hysteretic damping model 
and (b) damping force function shape for viscous damping and hysteretic damping 

 
 The steel bar response demonstrates that alternative damping models to viscous damping 
can produce dynamic responses consistent with physical observations.  Future work is planned to 
validate the SDOF results presented in Fig. 6 with experiments.  Also, the fundamental concept 
of a multiscale damping approach ─ where experimentally derived material damping models are 
integrated into response simulations through elastic strain energy relationships ─ will be 
extended to damping from flexural and shear deformation.  It is envisioned that the multiscale 
approach could also be integrated with the evolutionary damping scheme presented earlier in the 
paper.  The result will be a framework which integrates realistic, mechanics-based amplitude 
dependent damping behavior into nonlinear computational dynamic simulations of multi-degree 
of freedom structural systems. 
 

Conclusions 
 
 Due to the uncertainties associated with damping behavior in structural systems, current 
modeling procedures rely on simplified assumptions and inaccurate representations of behavior. 
The common practice of using global linear viscous damping does not account for different 
behaviors in the various components within a system, or changing behavior of the components. 
The discrete-spring model presented in this paper allows a variety of phenomenological damping 
behaviors to be incorporated.  The evolutionary model accounts for variations in damping 
through the use of an exponential function of velocity, where the time varying damping 
coefficient and nonlinearity exponent dictate the response. This allows the damping 
characteristics to be updated as the structural behavior changes. In the analysis, both amplitude 
and frequency affect the response, which is a characteristic not developed in linearly viscous 
damping.  The major challenges associated with this method are determining when and how the 
damping coefficient exponent will change during the response. Finding these shifts in behavior 
will likely need to be developed with experimental testing on the material and structural level.   
 
 The multiscale model uses the behavior of material at the microscopic level to represent 
the changes in the structure that relate to the damping. By using experimental hysteretic damping 



models, the area enclosed by the hysteretic loop can be representative of the damping force and 
can be determined for any response. This eliminates the global and linear aspect of current 
damping procedures, because the energy can be found at any location in the system under any 
behavior, whether linear or nonlinear. The results show that damping behavior at low amplitudes 
is similar to linear viscous damping but diverges at higher amplitudes when the response 
becomes nonlinear. This model relies on experimental behavior, which becomes both an 
advantage and disadvantage. While the results produced by the model are more representative of 
realistic behavior, the model cannot be used without the experimental relations.  
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