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ABSTRACT 
 
 A recent study conducted at Iowa State University (ISU) identified deficiencies in 

the current practice of accounting for soil-foundation-structure-interaction (SFSI) 
in the design of drilled shafts in cohesive soils.  The existing simplified methods 
are unable to capture the lateral response of a soil-shaft-column system accurately 
over the elastic and inelastic ranges, thus making them inapt for seismic design.  
Following a demonstration of the shortcomings and limitations of the existing 
methods, a new approach suitable for seismic design of drilled shafts in cohesive 
soils is presented.  The new approach models a column supported on a drilled 
shaft as a cantilever with a flexible base and the inclusion of soil resistance 
through the use of three springs, one rotational and two translational.  This 
approach is shown to accurately capture the lateral response envelope of columns 
supported on drilled shafts, validating its potential application in future design 
practice. 

  
 

Introduction 
 
 Currently, a significant amount of research is being performed in the area of SFSI in 
order to better understand the lateral response of structures in different soil types.  As part of an 
ongoing research effort in the field of SFSI, a recent project at ISU has examined the lateral load 
behavior of continuous column-foundation systems in cohesive soils (see Fig. 1).  The type of 
system examined was the bridge column that extended into the ground as a cast-in-drilled-hole 
(CIDH) shaft since this design is used in practice today due to the simplicity of construction, 
elimination of column-foundation connection and reduced construction costs. 
 
 Although CIDH shafts are commonly used in seismic regions because of the 
aforementioned benefits, the project identified a deficiency in the current practice of accounting 
for SFSI in the design of drilled shafts in cohesive soils.  Currently, several different models 
exist for simplifying the Winkler soil spring concept that accounts for SFSI in cohesive soils that 
generally rely on the determination of an equivalent cantilever system with a base fully fixed 
against deformation, no surrounding soil and an effective height to the fixity point shown in 
Fig.1.  None of the models, however, are able to capture the response of the system in both the 
elastic and inelastic ranges during a design level or greater seismic event.  This paper presents an 
investigation into the existing models in order to demonstrate some of these deficiencies and 
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provides a new approach to capture the lateral response of the system in both the elastic and 
inelastic ranges with the potential to provide information on local and global design parameters. 
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Figure 1.    Expected lateral response of a bridge column supported on a CIDH shaft 

 
Current Design Models 

 
 To minimize the complexity and to reduce the number of iterative steps needed for 
analysis and design when using the Winkler soil spring concept, many models have been 
developed in order to simplify the process of accounting for SFSI in the design of drilled shafts 
[e.g., Chai (2002), Priestley et al. (1996), Priestley et al. (2007)]. However, none of the models 
are able to capture the SFSI effects on the lateral load response throughout the entire loading 
range expected during design-level or greater seismic events.  Furthermore, these models have 
not given consideration in quantifying all local design parameters. This section of the paper 
provides a summary of an in-depth investigation into some of the more common approaches 
recommended for use in practice. 
 
Guide Specifications for LRFD Seismic Bridge Design (AASHTO 2009) 
 
 In the seismic design guidelines published by the American Association of State and 
Highway Transportation Officials (AASHTO), multiple methods are presented for determining 
the lateral response of pile foundations based on site location, bridge design and importance.  
Methods, from simple to complex, are discussed within the main guideline sections and 
additional simple methods are identified within the commentary.  The complex method presented 
within the guidelines uses the soil spring methodology, in which p-y curves are created and 
placed along the shaft length in order to determine the structural equilibrium through a numerical 
iteration process. Although the accuracy has shown to be very good (e.g., Reese et al. 2004 and 
Sritharan et al. 2007,), this method requires a significant amount of knowledge on the 
surrounding soil parameters and the combined experience in geotechnical and structural fields.  
 
 The simple method models the bridge column with a shaft extended to an equivalent 
point of fixity, near the location identified in Fig. 1, within the soil using empirical means.  The 
empirical equation determines the point within the soil that allows for the column/foundation 



system to be represented as an equivalent cantilever where the extended shaft is modeled without 
any surrounding soil and is fully constrained at the base from experiencing any deformation. The 
top end of the column/shaft unit is modeled using the constraints imposed by the bridge 
superstructure.  The equivalent point of fixity within the system is located by determining the 
extended length of the shaft from an equation that is a function of the ratio between the flexural 
rigidity of the pile and a soil modulus using empirical means.  The main deficiency of this 
approach is that it does not accurately capture the maximum moment location in the shaft as this 
point does not generally occur at the point of fixity, but rather above this point in most cases 
(Figure 1C).  The maximum moment location is critical in design as this will determine where 
the confinement reinforcement should be provided.  When plastic hinges are not designed 
correctly, a brittle failure of the foundation shaft will most likely ensue.  Other deficiencies of 
these code-based methods may be summarized as follows: 1) no validation for the estimated 
fixity point is given; 2) no clear information is provided on how plastic action in the shaft will be 
included when estimating the lateral column displacement; and 3) shear demand in the column 
and foundation shaft are assumed to be constant. 
 
 Within the commentary of AASHTO (2009), additional simple approaches are suggested 
in lieu of the point of fixity method if the systems are believed to not behave in a linear elastic 
manner. This is the case in most seismic design situations and some of the models suggested to 
deal with these design problems include Chai (2002) and Priestley et al. (2007).   
 
Chai (2002) 
 
 Chai proposed a 
model to determine the 
flexural strength and 
ductility for the lateral 
response of extended 
column shafts while 
accounting for the effects of 
soil. The model relies on the 
use of two points, fixity and 
maximum moment, along 
the length of the system.  A 
visual representation of the 
model and the two points 
defining the fixity and the 
maximum moment locations used to determine the lateral loading and displacements of the 
column/foundation system are shown in Fig. 2. 
  
 The method suggested for use by Chai was developed for both cohesionless and cohesive 
soils.  For each soil type, the effective fixity location was determined by relating the stiffness of 
the soil-shaft system to that of an equivalent cantilever system using equations produced by 
Poulos and Davis (1980) and standard cantilever displacements.  The maximum moment location 
was then determined by using a soil distribution along the length of the foundation shaft [e.g., 
modified version of Broms (1964) in a cohesive soil] to define shear and moment equations. 
  
 After defining the two key locations for the model, the plastic deformation of the 
foundation shaft was defined using an idealized elasto-plastic moment-curvature response at the 
section level, effectively ignoring the combined nonlinearity of soil, steel and concrete beyond 
the first yield limit state. The analytical plastic hinge length used in this process is that found 
through experimental means in Chai and Hutchinson (2002), which relates the plastic hinge 
length only to the above ground column height and varies between 1.0D and 1.6D, where D is 
the shaft diameter.  This approach was suggested for use by Chai for both soil types even though 

Figure 2. Equivalent fixed-base cantilever (from Chai 2002) 



the experiment was only performed in a cohesionless soil.  By multiplying the distance from the 
maximum moment location with the plastic curvature and analytical plastic hinge length, the 
plastic deformation of the system is determined.  Using the yield and plastic deformations, a 
relationship is produced that relates the displacement ductility of the system to the curvature 
demand of the foundation shaft to complete the method suggested by Chai. 

 
 The cohesive soil model proposed by Chai 
was compared with the full-scale outdoor test of 
Suleiman et al. (2006) to examine the efficiency 
of the model in cohesive soils.  The comparison 
found that the maximum moment location was 
under predicted by 30%, the analytical plastic 
hinge length was under predicted by 36% and the 
initial secant stiffness to the yield point was 25% 
lower than the experimental stiffness.  The global 
comparison of the results, provided in Fig. 3, 
shows that the idealized force-displacement 
response largely over predicts the yield point and 
fails to capture the secondary slope beyond the 
first yield limit state. 

 
 After noting the differences with the 
experimental test data, additionl shortcomings and limitations associated with this model are 
summarized as follows: 1) the perfectly plastic response between the yield and ultimate limit 
states ignores the strength gained from the combined nonlinear effects of the soil and steel 
reinforcement after yielding; 2) a structural analysis program may not be easily used for analysis 
purposes as it uses two characteristic lengths to define the maximum moment location and the 
fixity point; and 3) the plastic hinge length will generally be under-predicted since cohesionless 
soils are typically stiffer than cohesive soils. 
 
Priestley et al. (2007) 
 
 The effort by Priestley et al. (2007) on displacement-based seismic design included the 
topic of bridge columns supported by CIDH shafts.  To determine the design displacement 
values of this system, a model was introduced based off of the recommendations of Suarez and 
Kowalsky (2007). Accordingly, to determine the design displacement, the following steps are 
required: 1) locate the in-ground plastic hinge using nomographs or equations; 2) determine the 
yield and ultimate limit state curvatures using damage-control limit strains of steel and concrete; 
3) find the length of the analytical plastic hinge based off of Chai’s model (2002); 4) determine a 
coefficient to account for the effects of soil type and boundary conditions using nomographs or 
equations; and 5) find the yield and design displacements using the equations presented in 
Priestley et al. (2007).  This process defines the design displacements, but does not provide an 
easy way to determine the lateral shear demand in the shaft for the seismic event.  
 
 Also, the cohesive model was created through a parametric study using OpenSees on 
medium to soft cohesive soils (Suarez and Kowalsky, 2007), with undrained shear strengths, su, 
of 20 kPa and 40 kPa (420 psf and 840 psf). The ability of the model to characterize columns 
supported by drilled shafts in stiff soils has not been studied and the model is therefore limited to 
soft cohesive soils only even though su of cohesive soils may be as high as 400 kPa (8350 psf).  
A shortcoming with this model is that the plastic hinge length is determined using the Chai’s 
method (2002), which has been previously reported to generally under predict the analytical 
plastic hinge length in cohesive soils. 
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Proposed New Approach 
 
 Since current design models are unable to capture both the local and global responses of 
a continuous column/foundation system during a seismic event, a new model was developed that 
is to not only capture these responses but also to account for the effects of seasonally frozen clay 
due to its impacts detailed in Sritharan et al. (2007).  To realize this approach, a free-body-
diagram (FBD) of the expected deflected shape of the column-shaft system is shown in Fig. 4a.  
The system is cut at the maximum moment location, where the confinement will be needed, and 
the effective height of the model is defined from this location to the column top (see Fig. 4b).  As 
shown, to accurately capture the lateral response, a minimum of three springs are required: two 
to represent the flexible foundation at the maximum moment location and one to account for soil 
resistance above this location.  At the flexible base, the rotational spring captures the elastic 
rotation caused by movement below the maximum moment location as well as any plastic 
rotation occurring in the maximum moment region.  The second spring is intended to capture the 
translation occurring at this point due to the lateral movement below the maximum moment 
location.  The soil resistance above this location is modeled by a single translational spring 
located halfway between the maximum moment location and the ground surface with a stiffness 
based on the soil properties surrounding the CIDH shaft. Presented below is a summary of the 
proposed approach while derivations of all equations can be found in Shelman (2009). 
 
Maximum moment location 
 
 In the new approach, the location of the maximum moment is first defined as this will 
determine the effective height of the system and identify locations of all three springs.  In 
accordance with the terminology introduced in Fig. 5, the maximum moment location is found 
using Eq. 1, where αma, βma and χma are coefficients based on the soil’s undrained shear strength. 
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Figure 4.    (a) FBD of column-foundation system; (b) proposed new approach 
 
 



Zero moment location 
 

The next point to be 
determined is the point at which the 
moment profile first crosses back 
over the zero point below the 
maximum moment location.  This 
point is needed in order to determine 
the properties of the rotational and 
translational springs used in the 
flexible foundtion. The zero moment 
location is found using Equation 2, 
where αm0 and βm0 are coefficients 
based on the above ground height of 
the column.  
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Maximum moment translational spring 
 
 Once Lma and Lm0 are computed, the spring properties can be readily determined, starting 
with the bilinear response of the translational spring at the maximum moment location.  The 
translation of the foundation shaft at the ultimate condition is found using Equation 3, while the 
translation at the yield condition is found using Equation 4. 
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 In Equation 3, ψ is a correction factor used only if cu is less than 70 kPa (10 psi); 
otherwise the value is input as 1.  The lateral forces needed to activate the aforementioned 
displacements are computed by ensuring static equilibrium of the simplified model representing 
the system shown in Fig. 5. 
 
Rotational spring properties 
 
 The rotational spring placed at the maximum moment location is defined next.  In order 
to determine this bilinear moment-rotation spring, Eqs. 5 to 8 are used for the ultimate condition, 
where Lp is the analytical plastic hinge length used for calculating the plastic rotation, θp.  Eq. 9 
defines the elastic rotation below the maximum moment location at first yield, θeby.  The moment 
value for each point shall be taken as the ultimate moment and the first yield moment of the 
foundation shaft, respectively.  
 

Figure 5. Definition of different variables used in the 
proposed new model 
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where θebu = elastic rotation below the maximum moment location at ultimate condition; φp = 
plastic curvature of the section which is defined as the ultimate curvature, φu, minus the elastic 
curvature, φe, at ultimate condition; θu = rotation at the maximum moment at maximum moment; 
and θy = rotation at the maximum moment location when first yielding occurs.  
 
Soil Spring 
 
 The final translational spring used within the system is a soil spring.  This spring, which 
may be replaced by multiple springs, is placed halfway between the maximum moment location 
and the ground surface in order to account for the resistance provided by the soil in this region.  
By locating a soil spring within the system, the influence of seasonal freezing on the soil 
properties and thus the system behavior may also be accounted for.  The seasonal temperatures 
effects on other construction materials can be addressed in the model by revising the moment-
curvature response to account for the temperature effects on the material properties. 
 
 The properties of the translational spring can be found using the procedure for 
establishing a p-y curve as outlined by Reese (1975).  If a hand calculation is performed to 
determine the tip lateral load and displacement, first determine the ultimate soil pressure, pu, and 
multiply this by the height of the soil column to determine the resistance of the soil at the 
ultimate, Vsu.  When dealing with the yield condition, multiply this value by a coefficient, η, to 
adjust the soil resistance value to the limit state being analyzed.  The coefficient, η, is presented 
in Equation 10 and was found experimentally using data obtained from the analytical models 
produced at ISU (Shelman 2009).  
 

0.8115  (kPa)] 0.03ln[c  ηor  0.7536(psi)]0.03ln[cη uu +−=+−=  (10) 
 
Force-displacement response 
 
 Simple calculations may be performed in a computer program (e.g., MS Excel) to 
determine the global response of the system using the summation of the following individual 
parts presented above:  1) the total elastic displacement of the system; 2) the total plastic 
displacement; and 3) initial translation, Δt, at the maximum moment location.  The total elastic 
displacement is a summation of the displacement due to elastic rotation below the maximum 
moment location, Δeb, and the elastic displacement above the maximum moment location, Δea, 
due to the cantilever action produced from loading applied at the column top.  The initial 
translation at the maximum moment location is computed using either Eq. 3 or 4 depending on 
the limit state being analyzed.  The total plastic displacement, Δp, is due to the plastic rotation, 
θp, located at the maximum moment location.  The final equation, Eq. 11, requires iteration as 
the final top elastic displacement must be computed using the cantilever equation with a 
modification for P-Δ effects. 
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Model verification 

 
 Verification of the proposed method was performed using the data from full-scale testing 
of CIDH shafts in low plasticity clay (Suleiman et al. 2006).   This test program included cyclic 
load testing of two identical column-foundation systems (i.e., SS1 and SS2). They were tested at 
23°C and -10°C (~73 °F and 14 °F), respectively.  Using the material properties established for 
the test units, the proposed model was found to well simulate the lateral load response of both 
systems.  The warm weather comparison, SS1, is provided in Fig. 6a and the cold weather 
comparison, SS2, is provided in Fig. 6b. 
 
 In addition to the experimental verification, the model was verified against multiple 
nonlinear analyses of column-foundation systems using a computer program based on the 
Winkler soil spring method (Shelman 2009).  The computer program produced a basis for 
comparing the global and local responses of the model.  The local responses were verified by 
examining the translation at the maximum moment location, the elastic and plastic rotations at 
the maximum moment location, the location of the maximum moment, and the location of the 
zero moment.  Multiple points of comparison, including displacements and curvatures, were 
made in addition to the analytical models produced by Sritharan, et al. (2007) and have 
demonstrated that the model has the ability to handle a wide range of soil shear strengths and 
column axial loads.   
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Figure 6.    Verification of the proposed method with full-scale test results (a) warm weather 

conditions, (b) cold weather conditions 
 

Conclusions 
 
This paper first examined the current state of practice in regards to the seismic design of drilled 
shafts in cohesive soils and found that although several simplified models currently exist in order 
to determine the design displacements of drilled shafts, the models are not able to accurately 
capture the local and global response of the system.  Next, an alternative model for predicting the 
seismic response envelope of a column supported on a drilled shaft in cohesive soils was 
provided.  Based on the study summarized in this paper, the following conclusions are drawn: 



1 Previous models specified to be used for cohesive soils [e.g., Chai (2002) and Priestley et 
al. (2007)] have only been verified against experimentation on drilled shafts in 
cohesionless soils, leading to inaccuracies in modeling drilled shafts in cohesive soil. 

2 The models developed specifically for cohesive soils are typically for soft soils only and 
are not applicable for stiff clay. 

3 Plastic action in the existing methods is significantly underestimated for CIDH shafts in 
clay.  Although this is conservative for design, the system may be overly reinforced 
leading to higher costs. 

4 The maximum moment location is not accurately identified within many of the models.  
This is a crucial point in the design to ensure that enough confinement is provided in the 
required region of the shaft to create a dependable response for the column-foundation 
system;  

5 The proposed new model uses a series of three springs and has been shown to well 
simulate the global response of continuous column/foundation systems while enabling 
accurate estimates of the local design parameters at the critical locations. 

6 The new model has also been shown to handle the effects of seasonal freezing on the 
response of column/shaft system due to the presence of a soil spring above the maximum 
moment location and the modification of construction material properties with the 
temperature.  The effects of seasonal temperature variation are not addressed in any of the 
others methods discussed in this paper.    
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