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ABSTRACT 
 
 Metallic dampers represent one class of effective passive energy dissipation 

devices used to protect structures during earthquake excitation. In some cases, 
these devices can become partially or fully damaged, which in turn could lead to 
failure of the structural system. In the present study, a two surface damage 
thermoplasticity model is proposed to understand this inelastic behavior and to 
evaluate a potential damaged state of the metallic dampers. This model is 
formulated through a thermodynamic approach to damage mechanics based upon 
entropy production. Finally, the proposed model is implemented as a user 
subroutine in the finite element software ABAQUS and numerical results are 
compared with experimental data. 

  
Introduction 

 
 During the past several decades, passive energy dissipative systems have been developed 
to alleviate or to avoid damage of structures caused by earthquakes (e.g., Soong and Dargush, 
1997). Metallic dampers, which function by absorbing energy through the yielding of steel plates 
or bars, represent one class of effective energy dissipation devices. Ultimately, the energy 
dissipation may improve the overall performance of the building during earthquakes. However, 
there is a need to understand the behavior and potential failure mechanisms of these dampers.  In 
particular, a number of different cyclic plasticity models may be applicable. Valanis (1971, 
1980) developed endochronic theories considering intrinsic time to make the response rate 
independent, Chaboche and Rousselier (1983) developed internal variable theories using some 
quantities that can not be measured by direct experiment, and Mroz (1967), Dafalias and Popov 
(1975), and Krieg (1975) developed a multisurface plasticity models. Banerjee et al. (1987), and 
Chang and Lee (1987) developed a two surface plasticity model to represent both kinematic and 
isotropic hardening behavior. This two surface model is characterized by an inner surface that 
follows a kinematic hardening rule and an outer surface, which provides for isotropic hardening. 
This model was applied in Dargush and Soong (1995) to help understand inelastic behavior of 
steel plate dampers and also was able to give a good match with experimental force-
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displacement data for the initial cycles (Tsai et el, 1993).  
 
Under large amplitude cyclic loading, however, the structural steel of the metallic damper

 may undergo significant excursions into the inelastic range, which may be accompanied by incre
ases in temperature of the steel and the accumulation of damage. Thus, in the present work, we e
xtend the two surface model to incorporate damage mechanics concepts in order to consider thes
e thermal effects and material degradation processes. Recently, Basaran and Nie (2004) develope
d a damage model using a damage parameter based on the second law of thermodynamic law to 
determine the fatigue life of material. 

  
In this study, we propose a two surface thermoplasticity model and add a damage 

parameter to understand inelastic behavior of metallic dampers, considering thermal effects and 
material damage. This damage model is implemented as a user subroutine in the finite element 
software ABAQUS. Finally, numerical results are compared with the well-known nonlinear 
kinematic hardening model of Lemaitre and Chaboche (1994), an existing a two surface model, 
and experimental data. 
 

Damage Mechanics and Thermodynamic Approach 
 

To consider the deterioration of structural steel members in general and metallic dampers 
in particular during cyclic loading, a scalar field variable D  is introduced as a damage index at 
each point. Within the present model, under constant amplitude cyclic loading, the component 
tends to deteriorate gradually but at an increasing rate until failure occurs. This cumulative 
damage concept is suitable to predict a damage of component or structure involving a range of 
failure mechanisms, such as the growth of microcracks and microcavities. The basic damage 
mechanics idea was originated by Kachanov (1986), and then developed further by Lemaitre and 
Chaboche (1985) and Krajcinovic (1989), among others. At each material point, the scalar 
quantity D  is simply interpreted as a dimensionless number between zero and one, where 0D =  
corresponds to an undamaged state, while 1D =  represents a fully damaged state or fracture. 
Thus, the relation between an effective damaged stress (σ ) and undamaged stress (σ ) can be 
expressed by  
 

(1 )Dσ σ= −    (1) 
 
 Basaran and Yan (1998) introduced an entropy-based damage evolution function 

founded on the principles of thermodynamics. According to the second law, entropy is a 
monotonically increasing function, which is always positive for irreversible transformations of 
the system. Thus, entropy production can be used for evolution of accumulative damage. 
Boltzmann (1898) expressed disorder and entropy of system via the relations  

 
WkS ln0=   (2.a) 

or 
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where 0k  is the Boltzmann constant and W  is a disorder parameter, which can be described as 
the probability that the system exists in a given state compared to all the possible states. In Eq. 
(2.b), the entropy per unit mass is related to the disorder parameter, where R  is the gas constant 
and sm  is the specific mass. Then, according Basaran and Yan (1998), the damage parameter 
(D ) is defined as the ratio of the change in the disorder parameter to the initial reference state 
disorder as follows: 
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where crD  is the critical damage parameter which can be calculated from experiments. The 
entropy production ( sΔ ) is calculated by the summation of mechanical dissipation, thermal 
dissipation due to conduction of heat and thermal dissipation due to internal heat source per unit 
mass ( r ).  
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where ρ  is density and T  is absolute temperature. As shown in Eq. (4), 0D =  when 0sΔ = , 
and crD D=  when sΔ  goes to infinity. Thus, with dissipation, D  is always larger than zero, 
because the change in entropy has a nonnegative value.  
 

Then, the constitutive relation can be written in the following incremental form in terms 
of the undamaged and damaged stress: 

 
)()1()1()1( thpeee CDCDD εεεεσσ &&&&&& −−−=−=−=   (5) 

 
where eC  is the elastic constitutive matrix, eε&  is the elastic strain increment, pε&  is the plastic 
strain increment, and thε&  is the incremental thermal strain. If a two-surface thermoplasticity 
model (Banerjee et al., 1987; Chopra and Dargush, 1994) is adopted, the constitutive relation can 
be represented by the following pseudo code: 

 
For elastic loading or unloading, 
 

ijkkijij εμελδσ &&& 2+=    (6.a) 
 
Else for inelastic loading inside the outer surface, 
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Else for inelastic loading on the outer surface, 
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where L

yσ  is the inner yield strength, B
yσ  is the outer yield strength, ijS  is the deviatoric stress, 

and pH  is a hardening modulus, dependent on the hardening parameters nhH BB ,, 10 . Figure 1 
shows two distinct yield surfaces in deviatoric stress space. The inner surface, which separates 
the elastic range and inelastic range, is composed of its center and radius expressed by the back 
stress (α ) and inner yield strength ( L

yσ ). Meanwhile, the outer surface, which always contains 
inner surface, is located on the center of stress space with a radius represented by the outer yield 
strength ( B

yσ ). The translation of inner surface corresponds to kinematic hardening, while the 
expansion of outer surface produces isotropic hardening.  
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Figure 1. Two surface plasticity model definition 
 

By substituting Eq. (6) into Eq. (5) instead of the undamaged incremental stress, the 
coupled damaged stress-strain relationship of a two surface plasticity model was formulated as 
shown in Fig. 2. Thus, the proposed thermoplastic two surface damage model is characterized by 
the two surface plasticity model with a yield surface, flow rule and hardening rule on both 
loading and bounding surfaces, and a damage evolution function based on entropy production.  



The resulting model can be applied for a variety of metals with progressive damage under cyclic 
loading. Also, thermal strain is added to this two surface model to consider thermal effects, as 
indicate in Fig. 2. 
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Figure 2. Proposed two surface damage model 

 
Numerical Results of Simple Shear Problem with Two Surface Damage Model 

 
 The two surface damage model described above was implemented as a user subroutine 
(UMAT and UMATHT) in the ABAQUS (2008) finite element software. Once the small 
increment of strain is given, new updated state variables such as stress, back stress and plastic 
strain are obtained by integrating constitutive equations. For this analysis, a higher-order 
adaptive step size Runge-Kutta method is used to integrate the constitutive equations until a high 
level of accuracy is maintained. Prior to applying a two surface damage model to metallic 
dampers, simple shear problem was first used to consider several effects of this model, such as 
fatigue by cyclic loading and by temperature. The geometry and dimension of undeformed and 
deformed elements is shown in Fig. 3, which includes four 4-node plane strain elements and 
coupled displacement-temperature elements, if temperature is considered. The loading and 
unloading at the top is displacement controlled sine function with a maximum displacement of 
0.1 units.  

 
Figure 4 shows the cyclic response of undamaged and damaged material using the two 

surface model and a two surface damage model. After several cycles, entropy production is 
accumulated by mechanical dissipation. As a result, the damage parameter increases gradually at 
first and then more rapidly, until failure of material is identified, when the damage parameter 
approaches to one. If not only mechanical dissipation but also thermal dissipation is considered 
to the entropy production, the material can be damaged more severely and more rapidly than the 
case with only mechanical dissipation, as shown in Fig.5. Although here damage by thermal 
dissipation is comparatively smaller than damage by mechanical dissipation in Fig. 5, in general 
damage by thermal dissipation could be significant, especially if there are high temperatures or 
strong thermal gradients. 



 
Figure 3. The geometry of simple shear problem 
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         (a) Force-time response                                      (b) Force-displacement response  

Figure 4. Displacement analysis with mechanical dissipation 
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        (a) Force-time response                                      (b) Force-displacement response 

Figure 5. Coupled temperature-displacement analysis with mechanical and thermal dissipation 



Numerical Results of Metallic Dampers with Two Surface Damage Model 
 

Metallic plate dampers were modeled by 8-node solid brick elements (C3D8) in 
ABAQUS (2008) using a user subroutine (UMAT) in which the two surface damage model was 
implemented. Material properties and model parameters for the A36 structural steel of metallic 
dampers are shown in Table 1. The loading and unloading at the free edge is specified as a 
displacement-controlled sine function with the maximum displacement at top and bottom set at 
0.1L , where L  represents the length of the plate. Selected results are shown in Fig. 6 for a 
model representing one-half of one plate of the damper. Notice that the damage parameter is 
large at fixed edge and is small at free edge, because the strain energy by mechanical dissipation 
at the fixed edge is larger than that at the free edge. Thus, a damage parameter can be used as an 
index to express the damaged configuration.  
 
 

 
 

(a) Deformed and undeformed shape            (b) Damage parameter distribution 
 

Figure. 6 Numerical results of metallic dampers 
 

Table. 1 Material properties and model parameters for A36 structural steel 
 

Young’s Modulus (E) = 200,000 MPa Poisson’s ratio (υ ) = 0.3 

Inner yield strength ( L
yσ ) = 198 MPa Outer yield strength ( B

yσ ) = 427 MPa 

Hardening parameter ( BH 0 ) = 6450 MPa Bh1  = -8.47, n = -10.4 
 
 
Force-displacement plots of numerical models (Chaboche model, two surface model and 

two surface damage model with geometrically linearity and nonlinearity) and experimental 
results are plotted in Fig. 7. If the metallic dampers are analyzed by a Chaboche model, it shows 



that strength is increasing as the cycles progress.  This model can not predict any damage, as 
shown in Figure 7(a). Figure 7(c) gave mostly good agreements with experiments both before 
and after fracture occurred, though some differences exist. If the geometrically nonlinearity is 
considered to a two surface model and a two surface damage model, an additional stiffening 
exists at the higher range of displacement, as shown in Fig. 7(b) and Fig. 7(c). This behavior is 
very useful for designing metallic dampers, because it proves that these dampers have a higher 
capacity, however the potential for locking must be considered.  
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(a) Chaboche model                                    (b) Two surface damage model with            
                                                                       geometrically linearity 
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               (c) Two surface damage model with          (d) Experimental results (Tsai et al., 1992)     
                  geometrically nonlinearity                                                                                             

Figure 7. Comparison between experimental and numerical results 
 

Conclusions 
 
 A two surface thermoplastic damage model is formulated and implemented as a UMAT 
subroutine within ABAQUS.  Numerical results give reasonable correlation with experimental 



results both before and after damage has occurred. Consequently, this approach is helpful for 
understanding the cyclic behavior of metallic dampers and for designing metallic dampers 
considering large deformation. The damage parameter is governed by dissipation due to plastic 
strain for large strain case or thermal dissipation via conduction of heat for high temperature. 
Thus, this model is also useful to understand the behavior of metallic dampers and other metallic 
components, which experience significant excursions in temperature. The proposed two surface 
damage model has path dependent characteristics, because entropy production is accumulated 
from zero until the damage parameter equals to its critical value. Finally, this model may help to 
estimate the fatigue life of metallic dampers under cyclic loading and also more broadly to 
represent a range of failure processes in metals.  

 
Appendix 

 
The following symbols are used in this paper. 

eC  Elastic constitutive matrix 
D  Damage parameter 
E  Young's Modulus 
crD  Critical damage parameter 
pH  Hardening parameter 

0k  Boltzmann constant 
sm  Specific mass 
R  Gas constant 
r  Internal heat source per unit mass 
S  Entropy  
ijS  Deviatoric stress 
T  Absolute temperature 
W  Disorder parameter 
ijα  Back stress 

α  Thermal expansion coefficient 
eε&  Elastic strain increment 
ijδ  Kronecker delta 
pε&  Plastic strain increment 
thε&  Thermal strain increment 

σ  Damaged stress 
σ  Undamaged stress 
L
yσ  Inner yield strength 
B
yσ  Outer yield strength  

λ  Lamé constants 
μ  Shear modulus 
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