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ABSTRACT 
 
 Copper based shape memory alloys (SMA) possess thermo-mechanical properties that 

make them ideal for energy dissipation and re-centering devices for structural 
applications. However, good dissipation and re-centering characteristics have only been 
achieved for small diameter SMA wires and rods tested as single elements in tension or 
in small scale models tested in shaking tables. Attempts to achieve the same 
characteristics for sizes required in real structures have been unsuccessful. 

 The use of structural cables made of SMA wires is an alternative of application of this 
material to civil structures. Structural cables are composed of wires helically wound into 
strands, which, in turn, are wound around a core. They have high redundancy and can 
be used to carry large tensile forces in many civil engineering structures. If the cable is 
composed of SMA wires in austenite phase, better dissipation and/or re-centering 
capacity can be expected. Strand specimens were constructed from CuAlBe SMA 
wires and tested under cyclic tension. The specimens included helically wound strands 
and groups of wires in parallel. Strand experimental results are then used to validate a 
computational model developed to estimate cable response under axisymmetric loads.  

 
  

Introduction 
 
 Copper based shape memory alloys (SMA) possess thermo-mechanical properties that make 
them ideal for energy dissipation and re-centering devices for structural applications. However, good 
dissipation and re-centering characteristics have only been achieved for small diameter SMA wires and 
rods tested as single elements in tension or in small scale models tested in shaking tables. Attempts to 
achieve the same characteristics for sizes required in real structures have been unsuccessful. 
 The use of structural cables made of SMA wires is an alternative of application of this material 
to civil structures. In general, a cable is constructed by twisting a group of strands elements or wires 
around a straight core (twisted wire cables). They have high redundancy and can be used to carry large 
tensile forces in many civil engineering structures. If the cable is composed of SMA wires in austenite 
phase, better dissipation and/or re-centering capacity can be expected. 
 Reedlunn and Shaw (2008) performed some experiments on two commercially available Nitinol 
cables. The specimens were uniaxially loaded and infrared imaging was used to monitor transformation 
activity. The elongation rate was rather low. The response qualitatively matches the typical behaviour of 
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NiTi wire when the helix angle is low, but it differs substantially for a larger helix angle. Also remnant 
deformation are larger. 
 In this research, mechanical experiments were performed on strands made of CuAlBe SMA 
wires to characterize their behaviour and demonstrate their potential utility as resilient tension elements. 
In particular, parallel and twisted strands were uniaxially loaded and from the stress-strain curves 
equivalent viscous damping (ξ) and forward transformation (σt) and ultimate stresses (σu) were 
determined for each maximum strain. Later, strand experimental results are used to validate a 
computational model developed to estimate cable response under axisymmetric loads. Equilibrium 
equations are established for each individual wire, wire geometry is linearized, and a multilinear SMA 
CuAlBe wire stress-strain curve is used for computational purposes. Relationships between individual 
wire and strand properties were derived, and comparisons were made between strands with parallel 
and helical configuration. 
   
 

Wires Characteristics 
 
 Wires 0.5 mm diameter were previously tested under both quasi-static and dynamic tensile 
loading and reported elsewhere (Araya et al 2008). A summary is presented here. 
 The wires were heat-treated during different periods of time, and tested to study the effect of 
grain size, temperature, and strain rate on the strength, equivalent viscous damping, and re-centering 
properties of the alloy. The nominal composition was Cu-11.8wt.%Al-0.5wt.%Be, furnished by 
Trefimétaux, France. Phase transformation temperatures reported by the manufacturer are Mf = -47ºC, 
Ms = -18ºC, As = -20ºC and Af = 2ºC. Since ambient temperatures for civil engineering structures are 
usually greater than the Af transition temperature of 2 ºC, the material is expected to operate within its 
superelastic range. 
 The test samples were 90 mm long, while the distance between the machine grips was about 70 
mm. The cyclic tests were performed for nominal strain amplitudes of 0.8, 1.5 and 2.2 % and for 
temperatures ranging from 6 °C to 50 °C. The strain was measured with an extensometer that has a 25 
mm gauge length. The wires were initially slightly prestressed to avoid buckling. Each sample was tested 
at one amplitude with the following temperature sequence 25º, 6º, 50º, 25º, 6º and 50ºC. Later, some 
samples were retested at 25ºC up to fracture. Most of the tests consisted of series of 20 cycles at 
defined nominal strain amplitudes. To observe the evolution of the hysteresis cycles, some of the series 
included up to 60 cycles. 
 Fig. 1 shows cyclic tensile curves obtained for a nominal strain amplitude of 2.2% at 1 Hz, and 
for different grain sizes and temperatures. In each case, series of 20 cycles were imposed; for clarity  
sake only the stress-strain of the second cycle is given; actually, the first cycle was somewhat different 
from the others, while all the rest are very close to each other. 
The following remarks can be drawn from cyclic tests: 

- The material shows superelasticity. Actually, within experimental strains error limits, no residual 
deformations were detected under the employed tests conditions, although retained martensite 
was observed in optical microscopy images taken after the tests and not shown here. 

- For a given grain size, s t and the effective stiffness increase for increasing temperatures. The 
effective stiffness, a relevant civil-engineering design parameter, is defined for each cycle as the 
ratio (σmax-σmin)/(εmax-εmin). 

- Effective stiffness and forward transformation stress decrease for larger grain size.  
- For a given grain size, the maximum stress increases and the maximum strain diminishes as 

temperature is increased. This behaviour is related to the effect of temperature on the flow stress 
curve and to the type of strain control used in the tests. As it was pointed out, for higher 



temperature the material is stiffer, therefore, for the same load, less deformation is attained. 
 

 
Figure 1. Stress-strain relationship, for different grain size and temperature 

 
 Fig. 2 shows the equivalent viscous damping, calculated as the energy loss per cycle divided by 
(4π?maximum strain energy per cycle), as a function of the grain size for 2.2% nominal strain amplitude. 
For all grain sizes, a smaller equivalent damping is obtained for higher temperatures; moreover, damping 
is larger for larger grain sizes. However, larger grain sizes means less number of grains per diameter, so 
a less redundancy situation is generated. 
 

 
Figure 2. Equivalent damping 0.5 mm wires 

 
Strand Experimental Tests 

 
 Two 1 x 19 x 0.5 mm strand specimens 15 cm long were constructed from the previous 
CuAlBe wires, heat treated at 700ºC during 20 sec resulting in a nominal grain size of 60 µm. The 
nominal outer diameter was 2.5 mm. The helix angle of the exterior wires was 17.5º. Other two 
specimens included 19 wires in parallel, 15 cm long. The four of them were tested under cyclic tension 
at the Structural Engineering and Material Research Laboratory, Georgia Tech. The specimens were 
uniaxially loaded by an MTS electromechanical load frame, using a 50 kN load cell to monitor the 
force, while the grip displacement was measured by internal LVDT. 



 Two patterns of controlled displacements were applied: 20 cycles up to 2% strain and 22 
cycles with amplitudes varying from 0.5% till 8%. In the latter, the following sequence was followed: 3 
cycles at 0.5%, 1 cycle at 0.8%, 1.0 %, and 1.5%, 5 cycles at 2.2%, 1 cycle at 2.5, 3.0, 3.5, 4.0 and 
4.5%, 5 cycles at 5.0% and 1 cycle at 8.0%. The strain rate was 0.1 mm/sec.  For all specimens, the 
initial distance between the grips was about 10 cm, at zero loads. 
 Figure 3 shows stress-strain relationship for the strand and the parallel wires subjected to 20 
cycles at 2% strain, the curves are quite similar to those obtained for a single wire. Figure 4 shows the 
curves for increasing strains and the monotonic curve obtained for a single wire tested at 25ºC. The 
axial stress on each cable specimen is reported as P/Ao where (Ao = nπd2/4) is a chosen reference area 
based on the number of wires (n) in the cable and the individual wire diameter (d) (Reedlunn and 
Shaw,2008).  
 From these curves, elasticity modulus, forward transformation stress and equivalent viscous 
damping were calculated. Table 1 shows the elasticity modulus and the forward transformation and 
ultimate stresses for the different strands and single wires. Figure 5 shows the variation of equivalent 
viscous damping with strain for both cables and individual wires. Again, equivalent viscous damping is 
rather low. 
 

  
(a) helical strand (b) parallel wires 

Figure 3. Stress-strain curves. 20 cycles at 2% strain 
 
  



(a) helical strand (b) parallel wires 
Figure 4. Stress-strain curves. 22 cycles at increasing strains 

 
 Table 1. Elasticity Modulus, forward transformation and ultimate stresses 
Specimen E σt σu 
Strand 2% 48.8 GPa 225.5 MPa 460.9 MPa 
Parallel 2% 56.3 GPa 301.5 MPa 501.2 MPa 
Strand 5% 37.1 GPa 242.7 MPa 605.8 MPa 
Parallel 5% 40.3 GPa 263.3 MPa 625.3 MPa 
Wire 0.8% 99.0 GPa 300.0 MPa 441.0 MPa 
Wire 1.5% 79.0 GPa 270.0 MPa 493.0 MPa 
Wire 2.2 % 52.0 GPa 240.0 MPa 546.0 MPa 

 

 
Figure 5. Equivalent viscous damping 

 
 

Cable Analytical Model 
  



In general, a cable is constructed by twisting a group of cable elements or wires around a 
straight core (twisted wire cables).  A wire is a structural element whose cross-section is small 
compared to its length. The so-called plane-sections hypothesis is assumed: rope element cross-sections 
that are plane before deformation remain plane after deformation, thus the motion of a rope element is 
described in terms of parameters that are a function of only its axial coordinate. It is assumed that in the 
deformed and initial configurations, the geometry of a rope element, represented by its centerline 
(longitudinal or helix axis), can be described by a circular helix curve. Three geometric parameters are 
needed to describe a wire in a single helix configuration: helix radius (a), projected length of the rope 
component on the core axis (L) and pitch distance (p) as shown in Fig. 6. The helix radius is the 
distance measured from the core axis to the centerline of the wire and the pitch distance of a wire is the 
distance along the core component measured for a variation of a swept angle that varies from 0 to 2p. 
By definition, a circular helix curve makes a constant angle (helix angle) with a fixed line in space. This 
fixed line is the longitudinal axis of each component, and the helix angle (?) is defined as the angle 
between the axis of the component and the axis of the core component (Fig 6). The helix angle (?) can 
be computed using the following expression: 
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Due to its helical nature, a twisted wire cable possesses nonlinear strain-displacement 

relationships and its axial behavior exhibits coupling between tension and torsion. Velinsky (1985) 
presented a general discrete geometrical nonlinear theory to simulate twisted ropes behavior with 
complex cross-sections in their linear-elastic regime. The results of the proposed theory were compared 
to its linearized version and experimental data. The linear theory is based on the linearization of the 
strain-displacement relationships of a cable wire and the initial cable configuration is considered as the 
reference configuration. Linear models can essentially be divided into two categories, which are based 
on the types of hypotheses employed: (a) fiber models where the wire ropes can develop only tensile 
forces, and (b) rod models where the wire ropes can develop tensile and shear forces as well as 

Fig. 6. Cable Geometry 
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bending and twisting moments (Jolicoeur and Cardou, 1991). For the load range in which most of the 
steel wire cables are used (strains less than 0.01), the Velinsky (1985) concluded that the nonlinear 
theory showed no significant advantage over the linear theory (rod models).  

Gysling (2008), using an incremental approach, validated the use of linear models to estimate 
axial cable capacity considering both linear and nonlinear material properties of the cable elements. 
Validation procedure was performed by using comparisons among different linear models reported by 
Jolicoeur and Cardou (1991), nonlinear model (Beltran, 2006) and experimental data on steel wire 
cables and polyester ropes. After extensive parameter studies on cables with different geometric 
parameters and with different constitutive materials behavior, the author  concluded that linear models 
(fiber and rod models) are quite satisfactory to estimate overall cable response (cable stiffness, breaking 
axial load and breaking axial strain) for cables with helix angles less than 20º having both ends restricted 
to rotation.  

From purely geometrical consideration, the linearized relationship of the wire axial strain ei in 
terms of the cable axial strain e and the angle of twist per unit length f  is given by  
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where a0i; and ?0i  are the helix radius and the helix angle of wire i, respectively. As such, the linearized 
overall behavior of a cable subjected to axisymmetric loading can be written in the following incremental 
form:  
 









∆
∆

⋅







=








∆
∆

ϕ
ε

ϕε

ϕε

MM
FF

M
F

                                                                                                          (3)
 

 
where Fe, Ff , Me, and Mf  are the tangent stiffness coefficients;  ?F and ?M are the increments in axial 
force and axial moment (torsion) respectively; and ?e and ?f  are the increments in axial deformation 
and axial rotation per unit length respectively. Axial deformations are defined as follows: ?e = ? u/L and 
?f  = ?? /L where ? u and ??  are the axial displacement and axial rotation respectively (Fig. 6), and L is 
the initial cable length. For the sake of simplicity, considering the fiber model, tangent stiffness 
coefficients have the following form: 
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where subscript c refers to cable core; (AE)i is the axial stiffness of wire i, being Ai the cross-sectional 
area and  Ei is the tangent modulus of wire i defined as (ds /de)i (tangent of the uniaxial stress-strain 
curve) for a given wire axial deformation ei; and (GJ)c is the torsion stiffness of the core. 

 Based on the work by Motahari and Ghassemieh (2007), a multilinear one-dimensional 
pseudoelastic constitutive law is used for predicting the behavior of SMA wires under different loading 
conditions (Fig. 7). This model assumes a complete reverse transformation phase (path D-E in Fig. 7) 
and is described by six parameters: austenite elastic stiffness EA; martensite elastic stiffness EM; phase 
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Fig. 7: Constitutive law of CuAlBe SMA wires 
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transformation starting stress s Ms; phase transformation finishing stress s Mf; and the unloading stress at 
the end of the reverse transformation s Af. These parameters are obtained from experimental data on 
SMA wires. 
 

The stress-strain relationships on different paths in Fig. 7 are as given as follows: 
 

Paths O-A and E-O (elastic-fully austenite)    εσ AE=                                                (5a) 
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Path B-D (fully martensite)   ( )MfMMf E εεσσ −+=                                        (5c) 
 

Path D-E (reverse transformation)  ( )As
AsAf

AsAf
As εε

εε

σσ
σσ −

−

−
+=                             (5d) 

 
According to Motahari and Ghassemieh (2007), if the unloading occurs before the completion 

of the forward transformation or the reloading starts before completion of the reverse transformation, 
then the elastic stiffness  is different from both austenite and martensite phases (paths O’-A’, A’-B’, B’-
D’ and D’-O’). The author proposed the following expression to estimate the tangent stiffness Em (Fig. 
7): 
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where x is defined as (emax –eMs)/ (eMf –eMs) for the unloading case and (emin –eAs)/ (eAs –eAf) for the 
loading case. emax and emin  are the maximum and minimum strains before unloading or reloading, 
respectively. 
 In Fig.8 comparisons between experimental data and predicted strand responses (based on the 
proposed analytical model) are presented for both types of strand construction: parallel and helical wire 
configuration for different strain ranges. The parameters used to define constitutive law of CuAlBe SMA 
wires are the following (Fig. 7): EA = 57000 MPa; EM = 32633 MPa; s Ms = 340 MPa; s Mf = 580.5 
MPa; and s Af = 180 MPa. Predicted responses estimate reasonable well the maximum strand axial 
stress for both types of strand constructions, especially for the case of parallel configuration. The 
analytical model, however, does not predict well the unloading path of the strand response, especially as 
the strain range increases. In fact, experimental data show the presence of residual strains which means 
that there is no complete reverse transformation. This phenomenon is not captured by the analytical 
model because a perfect pseudoleastic constitutive model is used to obtain predicted strand responses.  



(a) Parallel wires (b) helical strand 
Figure 8. Analytical and experimental results 

 
Conclusions 

 
 This study evaluates the properties of cables and wires made of superelastic CuAlBe shape 
memory alloy under cyclic loading to assess its potential for applications in seismic resistant design. 
There are a number of additional challenges that must be overcome before going to an actual application 
including fabrication issues, such as the process of wounding and heat treating the cable, and cost issues. 
They have not been addressed in this work, considering that this is a first approach to assess the 
feasibility of using these cables. 
 Wires φ=0.5 mm, previously heated during different periods of time, are tested to study the 
effect of grain size, temperature and strain rate on the strength, equivalent viscous damping, and 
recentering properties of the alloy. The wires are subjected to quasi-static and dynamic tensile loading 
tests. The results show that nearly ideal superelastic properties can be obtained up to 3% axial strain. 
Overall, the damping potential of the alloy is moderate, typically less than 5%. Increased temperature 
lead to a reduction in the equivalent viscous damping and an increase in the forward transformation 
stress, while increased grain size lead to an increase in the equivalent viscous damping and a reduction in 
the forward transformation and ultimate stresses.  
 Strands made of helical and parallel wires were fabricated and tested in cyclic tension. Stress-
strain curves resulted quite similar to those obtained for single wires. Equivalent viscous damping 
reaches up to 4%. Superelastic limit is about 3% showing good re-centering properties. 
 The maximum axial stresses are well predicted by the numerical model for both types of strand 
construction at every single strain cycle (values are overestimated less than 10% of the experimental 
values). The experimental data show, however, that strands do not have a complete reverse 
transformation phase which is not captured by the numerical model. Further research on the constitutive 
law model of CuAlBe SMA wires is needed to improve and validate the proposed numerical model.   
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