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ABSTRACT 
 
 An important consideration for the design of seismic isolation systems composed 

of elastomeric bearings is the safety of individual bearings for maximum 
considered earthquake shaking. One assessment of bearing safety requires the 
bearing be stable at the maximum displacement that requires the reduced critical 
load carrying capacity be greater than the compressive load imposed on the 
bearing. Typically the reduced critical load carrying capacity is assessed using an 
overlapping area procedure whereby the critical load capacity at zero lateral 
displacement is reduced by the ratio of the overlapping area between the top and 
bottom bearing end plates divided by the total bonded rubber area for a given 
lateral displacement. Although the overlapping area procedure provides a simple 
method of estimating the load carrying capacity of an elastomeric seismic 
isolation bearing in the laterally deformed configuration previous research 
suggest the predictions are overly conservative and do not agree well with 
experimental data. This paper presents the results of a numerical study of the 
stability of an elastomeric seismic isolation bearing under large lateral 
displacement using the finite element method (FE). Results from the FE analyses 
show that the reduction in critical load carrying capacity does not decrease 
linearly with increasing lateral displacement as is approximately suggested by the 
overlapping area approach. A comparison of the FE results with the reduced 
critical load predicted by the overlapping area procedure suggests that the 
overlapping area approach significantly underestimates the load carrying capacity 
of elastomeric bearings in the laterally deformed configuration predicting zero 
capacity at a lateral displacement equal to the bearing diameter. An improved 
formula for predicting the reduction in critical load with lateral displacement 
based on the Koh-Kelly two-spring model is explored. 
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Introduction 

 Seismic isolation is a method of protecting a structure and it’s components from the 
damaging effects of earthquake ground motion by shifting the period of the isolated structure 
away from the predominant frequency content of the ground motion. This period shift is 
achieved through horizontally flexible isolators used to decouple the superstructure from the 
supporting substructure. Under moderate to large earthquake ground shaking, the increased 
period of the isolated structures typically translates into large lateral displacements across the 
isolation interface possibly accompanied by large axial compressive loads from overturning 
forces on some individual isolators. Elastomeric bearings are one type of isolator consisting of a 
number of alternating elastomeric (rubber) layers bonded to intermediate steel (shim) plates. The 
horizontal flexibility (shear stiffness) of an elastomeric bearing is dictated by the total thickness 
of rubber whereas the close spacing of the intermediate shim plates provides a large vertical 
(relative to the shear) stiffness for a given shear modulus and bonded rubber diameter. An 
important consideration for design is the stability of the individual elastomeric bearings under 
large lateral displacement and simultaneous axial compressive loading. It has been shown that 
these large lateral displacements might lead to substantial reductions in the load-carrying 
capacity of elastomeric bearings (Buckle and Liu 1994; Nagarajaiah and Ferrell 1999; and 
Buckle et al. 2002) and yet there is currently no codified procedure for assessing the stability in 
the laterally deformed configuration. One commonly used method for this assessment, although 
not codified, was introduced by Buckle and Liu (1994) that uses the ratio of overlapping area 
between the bearing top and bottom plates to the bonded rubber area at a given lateral 
displacement to reduce the critical load carrying capacity of elastomeric bearings in the 
undeformed configuration ( crP ). Figure 1 illustrates the overlapping area for a laterally deformed 
circular bearing. The reduced critical load carrying capacity ( 'crP ) for a given lateral 
displacement (u ) is calculated according to:  
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where  bA  is the bonded rubber area; rA  is the overlapping area between the bearing end plates 
and crP  is the critical load of the elastomeric bearing in the undeformed configuration (Kelly 
1997) calculated using: 
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where ( )s eff

GA is the effective shear rigidity of the bearing; G  is the shear modulus of the 

elastomer; sA  is the effective shear area; and EP  is the Euler buckling load of the bearing. 
Details on the calculation of crP  for elastomeric bearings can be found in Kelly (1997). 
 



 

Figure 1. Illustration of overlapping area 
 
 Although the overlapping area procedure provides a convenient method for assessing the 
stability of elastomeric bearing in the laterally deformed configuration the approach predicts zero 
load carrying capacity at a lateral displacement equal to the bearing diameter while experimental 
evidence has suggested that the reduced load carrying capacity at this level of displacement 
could range from 20% to 50% of crP  for square bearings with shape factors from 1.67 to 5 
(Nagarajaiah and Ferrell 1999; and Buckle et al. 2002). The shape factor (S) is defined as the 
ratio of the loaded area divided by the area free to bulge for an individual rubber layer. These 
results, although limited to square bearings with low shape factors (low for seismic isolation 
applications) suggest the overlapping area method: (i) does not capture well the stability  
behavior of the elastomeric bearing in the laterally deformed configuration and (ii) might 
provide overly conservative estimates of the load carrying capacity of elastomeric bearings in the 
laterally deformed configurations.  

Objectives 

 The objectives of this study are: (i) to investigate the stability of an elastomeric seismic 
isolation bearing (having a shape factor > 5) in the laterally deformed configuration using 
detailed nonlinear finite element (FE) analysis; (ii) to evaluate the reduced load carrying capacity 
predicted by the overlapping area procedure using the results of the FE study; and (iii) to explore 
an improved analytical formulation for predicting the reduced load carrying capacity based on a 
two-spring mechanical model (Koh and Kelly 1987) using numerical sensitivity analysis. The 
general purpose finite element software package ABAQUS (DSSC 2008) was used to model and 
investigate the stability of a scaled low-damping rubber bearing utilized for earthquake 
simulation testing (Warn and Whittaker 2008). The stability of the low-damping rubber bearing 
is studied using the results of a series of FE analyses that subjected the bearing to simultaneous 
axial compressive load and lateral displacement for a range of compressive load levels. The 
development of an improved analytical formulation based on a two-spring mechanical model 
introduced by Koh and Kelly (1987) for predicting the reduced load carrying capacity of 
elastomeric bearings is explored by numerically investigating the sensitivity of the two-spring 
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solution to various material (i.e., spring) and geometric assumptions. Results of the sensitivity 
analyses are intended to provide guidance as to the level of assumptions necessary for a robust 
analytical formulation.  

Finite Element Study of an Elastomeric Seismic Isolation Bearing 

Model Description 

 A three-dimensional half-space FE model of a low-damping rubber bearing with shape 
factor, S , equal to 10 utilized for earthquake simulation testing (Warn and Whittaker 2008) was 
developed in ABAQUS Version 6.8-1. The bearing is annular with an outer diameter of 152 mm, 
an inner diameter of 30 mm, 20 rubber layers each 3 mm thick providing a total thickness of 
rubber of 60 m and two 25 mm thick internal end-plates. A detailed cross-section of the low-
damping rubber bearing is presented in Fig. 2a. Figure 2b presents an illustration of the FE 
model in the deformed configuration. 
 

 0.1741

n Scale Factor: +1.000e+00

b    Abaqus/Standard Version 6.8−1    Fri Jun 12 16:44:40 Eastern Daylight Time 2009

 
a. details b. FE model 

Figure 2. Elastomeric seismic isolation bearing 

Material Properties 

 The steel shim plates and bearing end-plates were modeled with linear elastic material 
properties assuming a Young’s modulus of 200 GPa and a Poisson’s ratio of 0.3. 
 The Neo-Hookean model was chosen for the rubber material because of the direct 
relationship between the material constants and engineering properties of the rubber. The model 
assumes the rubber to be linear, isotropic and incompressible or nearly incompressible. The 
constitutive behavior of the hyperelastic material model is defined by the strain energy potential, 
W , that for the Neo-Hookean material model is: 
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where 10C  and 1D  are material parameters, 1I  is the first stress invariant and elJ  is the elastic 
volume ratio. The shear modulus, G , and bulk modulus, K , are related to the material 
parameters according to:  
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Table 1 presents values of the material parameter and corresponding shear and bulk moduli. The 
rubber was modeled as nearly incompressible with an assumed bulk modulus of 2000 MPa and a 
shear modulus of 0.68 MPa corresponding to the effective shear modulus at 100 percent shear 
strain determined from characterization testing performed on an identical low damping rubber 
bearing (Warn and Whittaker 2008). 

Table 1. Material parameters for the Neo-Hookean model. 

Material Model C10 
MPa 

C01 
MPa 

D1 
1/ MPa 

G 
MPa 

K 
MPa 

Neo-Hookean 0.34 0 0.00099 0.68 2000 

Boundary Conditions and Loading 

 For the stability analysis the bottom bearing end-plate was restrained against rotation and 
translation. The top bearing end-plate was allowed to translate in the vertical and lateral 
directions but restrained against rotation. To prevent torsion the vertical load and lateral 
displacement were applied through the centroid of the bearing top-plate. An additional restraint 
was applied to the intermediate rubber layers to prevent bulging in the out-of-plane direction on 
the cut surface that would be restrained by the other half of the bearing. 

Numerical Results of Stability Analysis 

 The stability limit of the elastomeric bearing in the laterally deformed configuration is 
identified as the point at which the shear force passes through a maximum value ( Nagarajaiah 
and Ferrell 1999) corresponding to the point where the tangential horizontal stiffness equal zero 
for a given axial compressive load. Stability data was obtained by performing a series of static, 
nonlinear, FE analyses whereby the bearing model was subjected to combined axial compressive 
load and sheared through a lateral displacement. Two analysis procedures were used. For low 
axial compressive load levels, the FE analyses were performed by first subjecting the bearing to 
a constant axial compressive load then shearing it to a target lateral displacement. However, for 
high axial compressive loads (greater than 60% of crP ) the FE analysis failed to reach a 
significant lateral displacement. Therefore for axial compressive load greater than 67 kN, a 
second analysis procedure was used that subjecting the FE model to simultaneously increasing 
axial compressive load and lateral displacement to a specified displacement less than the target 
displacement. The analysis then continued by shearing the bearing under the constant axial 
compressive load to the target displacement. This procedure was performed for the axial load 
level of 67 kN to verify the stability point was not affected by the analysis procedure. The values 
of the axial compressive load and lateral displacement where the tangential horizontal stiffness 
equaled zero were identified as the reduced critical load ( 'crP ) and critical displacement ( cru ).  
 Figure 4 presents sample force-displacement curves from the FE model for axial 
compressive loads ranging from zero to 222 kN (equivalent to 12.7 MPa of vertical compressive 



pressure). The results presented in Fig. 4 show that as the axial compressive load increases the 
shear force passes through a maximum value and that the displacement at which the maximum 
value occurs decreases with increasing axial load. This result has been observed by others 
(Buckle and Liu 1994; and Buckle et al. 2002) from experimental testing and 2-D finite element 
analysis of square laminated rubber bearing.  A discontinuity in the force-displacement curves 
for axial loads greater than 67 kN is a result of the second analysis procedure. 

The reduced critical load ( 'crP ) results obtained from the FE analyses were normalized 
by the critical load ( crP ) of the bearing calculated to be 290 kN using to Eq. 2. Normalized 
reduced critical load ( ' /cr crP P ) data plotted as a function of the corresponding critical 
displacement ( cru ) normalized by the bearing diameter ( D ) is plotted in Fig. 5. Also plotted in 
Fig. 5, is the reduced critical load predicted by the overlapping area procedure also in normalized 
format. The FE results presented in Fig. 5, show the normalized reduced critical load decreases 
with increasing lateral displacement having a value of 0.28 at a  /u D  approximately equal to 1. 
Comparison of the FE stability data with that predicted by the overlapping area procedure 
suggests the overlapping area procedure significantly underestimates the load carrying capacity 
for all lateral displacements notably predicting zero load carrying capacity at a lateral 
displacement equal to the bearing diameter whereas the detailed FE analysis suggest 
approximately 28% of the loading carrying capacity remains. Further, this comparison shows the 
overlapping area procedure does not capture well the observed behavior of the elastomeric 
bearing. 
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Figure 4. Force-displacement response of bearing for varying axial load levels 
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Figure 5. Stability results from FE analysis 

Numerical Analysis of the Two-Spring Model 

 The results presented in Fig. 5 motivated an exploration for an improved method of 
predicting the reduced critical load carrying capacity of elastomeric bearings at a given lateral 
displacement. A two-spring mechanical representation of an elastomeric bearing introduced by 
Koh and Kelly (1987) was first considered for the derivation of an improved formula. The two-
spring model has been shown to capture the coupled horizontal and vertical behavior of 
elastomeric bearings well predicting the reduction in horizontal stiffness and damping with 
increasing axial load (Kelly 1997). In addition the two-spring model was shown to predict with 
reasonable accuracy the reduction in vertical stiffness with lateral displacement observed from 
experimental testing of low-damping rubber and lead-rubber bearings (Warn et al.  2007). The 
application of the two-spring model to predict the stability of square elastomeric bearings was 
explored (Nagarajaiah and Ferrell 1999) showing the two-spring model might be capable of 
providing improved estimates of the reduced critical load carrying capacity however a closed-
form formula was not pursued. This section presents the results of a sensitivity analysis of the 
two-spring solution to various material and geometric assumptions. Results of the sensitivity 
analysis are being used to guide the development of a closed-form solution for the reduced 
critical load carrying capacity derived from the two-spring model. Derivation of the closed-form 
is ongoing therefore the final form could not be presented in this paper. 

Two-Spring Model 

 Figure 6 presents an illustration of the two-spring model in the undeformed (Fig. 6a) and 
laterally deformed (Fig. 6b) configurations. The model consists of a linear spring with stiffness, 

sK , a rotational spring with stiffness, θK , two frictionless rollers, and a rigid tee supported by a 
pin with total height, h . Also shown in Fig. 6 are the applied loads, P  and F , and the resulting 
deformations, namely, the lateral displacement at the top of the column, u , rotation about the 
pin, θ , reduction in height, δv , and deformation of the linear spring, s . Relating the spring 
properties of the model to the mechanical properties of an elastomeric seismic isolation bearing 
provides a simple physical understanding of the behavior under combined lateral and vertical 
loading (Kelly 1997).  



 

 

a. b. 
Figure 6. Illustration of two-spring model: (a) undeformed and (b) 

deformed configuration 
 
Considering the model in the deformed configuration the following equilibrium equations are 
obtained: 
 

 ( ) ( )cos sinθ θ⋅ = ⋅ + ⋅sK s F P                                                                                         (6) 
 

 [ sin( ) cos( )] [ cos( ) sin( )]θ θ θ θ θ θ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ − ⋅K P h s F h s                                            (7) 
 
Further, compatibility of the model requires the lateral displacement, u , is related to the local 
deformations quantities s  and θ , according to: 
 
 sin( ) cos( )θ θ= ⋅ + ⋅u h s  (8) 
 
Equations (6) and (7) were solved numerically with different material (spring) and geometric 
assumptions to determine the sensitivity of the equilibrium solution and to identify the key 
material and geometric assumptions necessary for the two-spring model to capture the instability 
behavior of elastomeric bearings.  

Sensitivity of Two-Spring Solution 

 The sensitivity of the two-spring solution to different material (spring) and geometric 
assumptions was studied to determine the level of complexity necessary for the two-spring 
model to predict the reduction in load carrying capacity with increasing lateral displacement. 
Five cases were considered: (1) linear springs – linear geometry; (2) linear springs – nonlinear 
geometry; (3) nonlinear  Ks  - nonlinear  geometry; (4) nonlinear Kθ  - nonlinear geometry; and 
(5) nonlinear springs – nonlinear geometry.  
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Figure 7. Sensitivity of the two-spring solution to the following 

assumptions: (a) Linear; (b) Linear springs-nonlinear geometry; (c) 
nonlinear Ks and geometry ; (d) nonlinear Kθ  and nonlinear geometry and 

(e) nonlinear springs and nonlinear geometry.  
 
 The solution of the equilibrium equations for the five cases was obtained using a 
numerical routine to solve simultaneous nonlinear equations in Matlab (Mathworks 2008). For 
cases with linear spring properties, the constants Ks and Kθ were assigned values based on the 
calculated shear stiffness and rotational stiffness of the low-damping rubber bearing using the 
same geometric and material properties used for the FE analysis. For cases with linear geometry 
the sin( )θ  and cos( )θ  terms were replaced with θ  and 1, respectively. For cases with nonlinear 
spring properties Ks  and Kθ  were assumed to reduce with shear displacement, s and rotation θ  
using relationships proposed by Nagarajaiah and Ferrell (1999). Numerical solutions for the 
equilibrium of the two-spring model for the five cases are presented in Fig. 7 in the form of axial 
force versus lateral displacement curves. Each curve in Fig. 7 represents a constant shear force 
value. The results presented in Fig. 7 suggest that the nonlinearity in the rotational spring (Kθ ) 
must be considered along with nonlinear geometry for the two-spring model to predict a 
reduction in load carrying capacity with increasing lateral displacement. 

Results 

 Fig. 8 presents a comparison of the predicted stability of the low-damping rubber bearing 
from the FE model, the two-spring numerical solution and the overlapping area procedure. As 
shown before the overlapping area procedure underestimates the stability of the elastomeric 
bearing by comparison to the FE results. The two-spring stability curve does predict load 
carrying capacity at a displacement equal to the bearing diameter ( / 1=u D ) however the trend 
of the curve differs substantially from the FE results. Preliminary results, although not presented, 
here suggest the two-spring stability curve is sensitivity to the form of the nonlinear relationship 
between the spring properties and displacement quantities.  
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Figure 8. Comparison of predicted stability for low-damping rubber bearing 

Conclusions 

 This paper presented preliminary results of a numerical study on the stability of an 
elastomeric seismic isolation bearing. Although the results of this study are preliminary the 
following conclusions are suggested: (i) based on the FE investigation the stability or load 
carrying capacity of an elastomeric seismic isolation bearing with shape factor of 10 reduces 
with increasing lateral displacement to approximately 30% of the critical load at a lateral 
displacement equal to the bearing diameter (250% shear strain); (ii) the predicted stability using 
the overlapping area procedure significantly underestimates the load carrying capacity by 
comparison to the FE analysis and does not capture well the behavior of the elastomeric bearing 
in the laterally deformed configuration; and (iii) the two-spring model might be a viable 
alternative for the development of an improved analytical formulation for the predicting stability 
of elastomeric bearings however an improved understanding of the nonlinear spring properties is 
needed.  
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