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ABSTRACT 

 
Investigation of the dynamic characteristics of an existing structure 

system based on field tests is of practical significance, since it can be 
employed in the field of examining construction quality, validating or 
improving analytical finite element structural models, or conducting damage 
assessment. The main purpose of this study is to investigate the dynamic 
characteristics of dams using the seismic response data. Whereas, in the 
process of frequency domain identification of dam properties, frequency 
response function (FRF) plays the most important role, evaluating the 
corresponding parameters with better accuracy has always been desirable. 
Therefore, a comparison was made between some modified methods of 
calculating the FRF to reduce its variance. Furthermore, a software is 
introduced which is able to use all of these methods plus an Auto-Regressive 
model in order to calculate Power Spectral Density (PSD) of input and output 
data separately so that, modal parameters of the system are identified. In order 
to validating the results of this AR model, the software is employed to identify 
dynamic characteristics of Factor building in UCLA. Later, it is also exploited 
to identify the dynamic properties of Shahid Rajaee concrete arch dam (which 
is located in the north of Iran) and compared with the prior studies. 

Introduction 

The problem of system identification has become important in structural engineering, 
particularly in connection with the prediction of structural responses to adverse environmental 
loads, such as earthquakes, wind and wave forces, and also with respect to the estimation of 
existing conditions of structures for the assessment of damage and deterioration. [1] 
Investigation of the dynamic characteristics of an existing structure system based on field tests 
is a necessary and important task in the course of checking the construction quality, validating 
or improving analytical finite element structural models, or conducting damage assessment. 
To accomplish this task, the well-known field tests used are ambient vibration tests, forced 
vibration tests, free vibration tests, and earthquake response measurement.  

Among these field tests, ambient vibration experiments are the most popular ones 
because they are portable and easy to set-up. However, because the input in an ambient 
vibration test is usually too complicated to be known or measured, one has to determine the 
modal parameters from the output data only [2, 3]. In contrast for the case of forced vibrations 
different methods are applicable because the input data could manage easily, but strong 
enough excitation which could excite all mode shapes will be expensive and hazardous. 
Structures subjected to seismic excitations can exhibit non-linear behaviours that cannot be 
accurately represented using linear, time-invariant models. For this reason, non-linear 
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modelling and system identification are critical to the design, health monitoring, and damage 
detection of such structures, although input data could be measured in this cases but still 
methods are limited  [4, 5]. 

Modelling and identification techniques can be categorized as being either parametric 
or non-parametric. Parametric system identification seeks to determine the “optimal” 
parameters for an assumed structural model such that modelled response closely matches the 
recorded response of the structure. Non-parametric techniques attempt to identify the 
“optimal” functional representation of the structure without any a priori assumptions about the 
model’s structure. However, most of these techniques inherently involve complicated search 
processes and are thus computationally inefficient. They may even be numerically unstable 
for large-scale infrastructures that have a significant number of degrees of freedom. 

Due to the large scale and distributed nature of civil infrastructures and buildings, 
almost all the local and global identification techniques involve the use of the measured 
structural responses under dynamic excitations, such as earthquake, wind, or traffic loads, also 
material deterioration and damage result in change in structural parameters, for example, the 
stiffness of a structural member or a substructure and the damping coefficient of a structure 
[6-8]. These changes will modify the dynamic properties, such as the natural frequencies and 
mode shapes of a structure [9, 10]. 

State of the Problem 

Frequency response functions (FRFs) are the most fundamental data for the frequency 
domain identifications of dynamic characteristics of structural systems. Accurate evaluations 
of FRFs are essential to many problems, such as experimental modal analysis, structural 
system identification, and input identification. In the case which the system encounters with 
noises on input and output data the system behaviour could be considered with equation (1): 

      (1) 

In which v(t) is a white noise with zero average so to find h(k) we need to remove v(t), 
by multiplying u(t-τ) to both sides and calculating the Expected value we have: 

    (2) 

ryu and ruu are stand for cross-correlation and auto-correlation respectively, and 
because the expected values of a zero mean signal, like v is zero the equation (2) leads to: 

        (3) 

Or in the other way by operating Fourier transform we have: 

        (4) 

ϕyu and ϕuu are two well known cross spectrum and power spectral density, from the 
recent equation (4) the problem of finding H(ω) (FRF) seems to be solved, but from the 
definition of expected value: 

        (5) 

It’s obvious that all the above equations could be accepted when the length of signal is 
infinite, so in the case of finite signals the exact equations will be estimation of real values. If 
the estimation is made to calculating correlation functions and then transformed using Fourier 



the estimator will called correlogram but if the spectrums estimated separately we have a 
periodogram. The bias and variance of an estimator are two measures often used to 
characterize its performance. A primary motivation is that the total squared error of the 
estimate is the sum of the bias squared and the variance.  

        (6) 

 Both correlogram and periodogram are biased estimators, and as it’s obvious from the 
above equation (6) it’s impossible to reduce bias and variance of such estimators 
simultaneously, so from the study of their bias value we found that the bias value works like a 
weighting function on the power spectral density (PSD): 

              (7) 
 

      (8) 

By considering the shape these weighting functions in the frequency domain - Fig 1, 
we found that they are poor approximations of Dirac impulse. In addition, unlike the Dirac 
delta function, they have a large number of side lobes. It follows that the bias of estimators 
can basically be divided into two components, which correspond respectively to the non-zero 
main lobe width and the non-zero side lobes height of the window function [11]. 

 
Figure 1: Rectangular window in frequency domain. 

The principal effect of the main lobe is to smear or smooth the estimated spectrum. 
Assume, for instance, that ϕ(ω) has two peaks separated in frequency f by less than 1/N then 
these two peaks appear as a single broader peak, since the “response” of the “system” 
corresponding to the first peak does not get the time die out before the “response” to the 
second peak starts. This kind of effect of the main lobe on the estimated spectrum is called 
smearing. Owing to smearing, the periodogram-based methods cannot resolve details in the 
studied spectrum that are separated by less than 1/N in cycles per sampling interval. For this 
reason, 1/N is called the spectral resolution limit of the periodogram method. 

The principal effect of side lobes on the estimated spectrum consists of transferring 
power from the frequency bands that concentrate most of the power in the signal to bands that 



contain less or no power. This effect is called leakage. For instance, a dominant peak in ϕ(ω) 
may through convolution with the side lobes lead to an estimated spectrum that contains 
power in frequency bands where ϕ(ω) is zero. Note that the smearing effect associated with 
the main lobe can also be interpreted as a form of leakage from a local peak of ϕ(ω) to 
neighbouring frequency bands. 

It follows from the previous discussion that smearing and leakage are particularly 
critical for spectra with large amplitude ranges, such as peaky spectra. For smooth spectra, 
these effects are less important. The bias of the periodogram estimator even though it might 
be severe for spectra with large dynamic ranges when the sample length is small, does not 
constitute the main limitation of this spectral estimator. In fact, if the bias where the only 
problem, then by increasing N (assuming this is possible) the bias would be eliminated. 
Hence, the periodogram is an asymptotically unbiased spectral estimator. The main problem 
of the periodogram method lies in its large variance.   

Solution Procedure 

As we have seen, the main problem with the periodogram is the high statistical 
variability of this spectral estimator, even for very large sample lengths. This effect may be 
reduced by truncating the sum in its definition equation (7), following this idea leads to some 
modified periodogram methods [12]. 

Blackman-Tukey Method 

Blackman and Tukey (BT) estimator is given by the following equation: 

      (9) 

Where w(k) is an even function which is such that w(0)=1 and decays smoothly to 
zero with k, and where M<N. since it weights the lags of the sample covariance sequence, it’s 
called a lag window. If w(k) is selected as a rectangular window then we simply obtain a 
truncated version of correlogram. However, the window may be chosen in many ways, the 
flexibility may be employed to improve the accuracy of the Blackman-Tukey spectral 
estimator. 

Bartlett Method 

The basic idea of Bartlett method is simple: to reduce the large fluctuations of the 
periodogram, split up the available sample of N observations to L=N/M subsamples of M 
observations each, and then average the periodograms obtained from the subsamples for each 
value of ω. Since Bartlett method operates on data segments of length M, the resolution 
afforded should be on the order of 1/M. Hence, the spectral resolution of the Bartlett method 
is reduced by a factor L (Number of segments), compared to the resolution of the original 
periodogram method. In return for this reduction in resolution, we can expect that the Bartlett 
method has a reduced variance. It can, in fact, be shown that the Bartlett method reduces the 
variance of the periodogram by the same factor L. The compromise between resolution and 
variance when selecting M (or L) is thus evident. 

Welch Method 

The Welch method is obtained by refining the Bartlett method in two respects. First, 
the data segments in the Welch method are allowed to overlap. Second, each data segment is 
windowed prior to computing the periodogram. By allowing overlap between the data 



segments and hence by getting more periodograms to be averaged, we hope to decrease the 
variance of the estimated PSD. Additionally, the temporal window may be used to give less 
weight to the data samples at the ends of each subsample, hence making the consecutive 
subsample sequences less correlated to one another, even though they are overlapping. The 
principal effect of this “decorrelation” should be a more effective reduction of variance via 
the averaging. The use of windowed periodograms in the Welch method, as contrasted to the 
unwindowed periodograms in the Bartlett method, indeed offers more flexibility in 
controlling the bias properties of the estimated spectrum. The variance of the Welch spectral 
estimator is more difficult to analyze. However, there is empirical evidence that the Welch 
method can offer lower variance than the Bartlett method but the difference in the variances 
corresponding to the two methods is not dramatic. 

Auto-Regressive Model 

A rational PSD could be written in the following form: 

         (10) 

The Weierstrass Theorem from calculus asserts that any continuous PSD can be 
approximated arbitrarily closely by a rational PSD of the form (10), provided the degrees m 
and n in (10) are chosen sufficiently large; that is, the rational PSDs form a dense set in the 
class of all continuous spectra. Since ϕ(ω)>0, the rational spectral density can be factored as 
follows: 

         (11) 

So the arbitrary rational PSD can be associated with a signal obtained by filtering 
white noise of power  through the rational filter with transfer function 

. The filtering can be written in the time domain as 

         (12) 

Or, alternatively, 

        (13) 

Where y(t) is the filter output, e(t) is white noise of variance equal to , and  is 
the unit delay operator: 

         (14) 

A signal y(t) satisfying this equation is called an autoregressive moving average 
(ARMA) signal. If m=0 then y(t) is an autoregressive (AR) signal; and y(t) is a moving 
average (MA) signal if n=0. In the ARMA class, the autoregressive or all-pole signals 
constitute the type that is most frequently used in applications. The AR equation may model 
spectra with narrow peaks; this is an important feature since narrowband spectra are quite 
common in practice. In addition, the estimation of parameters in AR signal models is a well-
established topic; the estimates are found by solving a system of linear equations, and stability 
of the estimated AR polynomial can be guaranteed. 



Special cases 

The Factor Building: A permanently instrumented 15-story steel frame building  

The UCLA Louis and Doris Factor building, was instrumented by the U.S. Geological 
Survey with an embedded 72 channel accelerometer network following the 1994 Northridge 
earthquake. The accelerometer network is distributed throughout the building and 
continuously recording building vibrations. In December 2003, the sensor network was 
upgraded by installing state-of-art data logging equipment and fibre optical network cables. 
To date, substantial data have been collected from ambient vibrations under different 
environmental conditions, as well as from low-amplitude vibrations from several earthquakes. 

The Factor building, with its embedded sensor network, provides a unique platform 
for the identification of dynamic characteristics, structural performance monitoring, and 
damage detection. Establishing a reliable three-dimensional finite element model which 
accurately represents the stiffness of the structural system is an important step in assessing the 
structural performance and detecting damage under more significant shaking [13]. 

Four accelerometers exist at each floor above grade, oriented to record translational 
motions near the perimeter of the floor (two in each direction). Each of the two basement 
levels has an accelerometer to record translation in two directions, as well as two 
accelerometers to record vertical responses. The upgrade consisted of converting all 72 
channels to a 24-bit network continuously recording data using Kinemetrics Antelope seismic 
software. The streaming data is currently viewable via the internet in near real-time. In 
February 2005, a 100m deep borehole seismometer was installed approximately 50m away 
from the building. The level of instrumentation provided in and around the Factor building 
makes it one of the most (if not the most) densely permanently instrumented buildings in 
North America. 

Data collected on the Parkfield, CA earthquake (Mw = 6.0) occurred on 9/28/2004 
17:15:24 UTC. Peak accelerations of 0.0025g were recorded at the roof of the building. In 
regards to this project, the unknown system is the Factor building structure, the measured 
outputs are the story accelerations, and the measured input is the ground motion. The inputs 
and outputs are recorded by the embedded sensor network. The results of system 
identification according to (3) and the results which calculated using Auto-Regressive model 
by the developed software can be seen below. The numeric results and finite element results 
are shown in table 1. 

 
Figure 2: Factor building FRFs according to [13]. 



 
Figure 3: Factor building FRFs calculated by AR model. 

 

 
Table 1: Numerical results of Factor building identification. 

Mode Shape 

Calculated by AR model According to [13] Finite Element

Freq Damping ratio Freq 
Damping 

ratio Freq 
(Hz) % (Hz) % (Hz) 

1st EW 0.474 4.6 0.467 4.8 0.513 
1st NS 0.523 2.3 0.506 4.7 0.511 
2nd EW 1.480 3.8 1.488 5.4 1.507 
2nd NS 1.670 2.9 1.665 4.9 1.445 
3rd EW 2.690 7.6 2.677 4.4 2.534 
3rd NS 2.822 2.9 2.862 4.9 2.386 

Shahid Rajaee Concrete Arch Dam 

The Shahid Rajaee Dam is a 130m high and 420m long concrete arch dam over Tajan 
River in the south east of Sari the centre of Mazandaran province. Considering the fact that 
the cross section of the valley of the dam site is in the shape of a wide 'V' and that 
topographically the abutments spread out slightly toward the downstream, a three-centred 
double curvature with variable thickness arch dam layout was adopted.  

The dam body is divided into 16 blocks and each of the blocks is about 26m long. This 
dam site is composed of massive and indurate sandstone and siltstone with thin alternated 
beds in parts. The bedding strike is generally parallel to the river channel and dips 
approximately 40 ° toward the right bank, thereby creating a dip slope left abutment and a 
scarp slope right abutment. The rock states at the dam foundation are very regular in their 
strike and dip and are essentially not offset by fault. Both the sandstone and siltstone are 
strong and hard. This dam was built in 1997.  

By using the PADAP program, a dynamic response analysis was performed using 
finite element modelling and considering the Dam-Water interaction [15]. The first five mode 
frequencies of Shahid Rajaee arch dam were obtained and are shown in Table 2. 

Table 2: Shahid Rajaee Finite Element results [15]. 

Finite Element 
Mode Freq 
Shape (Hz) 



1st 2.022 
2nd 2.359 
3rd 3.002 
4th 3.475 
5th 4.079 

 
However, a strong-motion instrumentation program was developed at the Shahid 

Rajaee dam for the purpose of studying the post-seismic safety assessment of the dam. There 
are 5 SSA- 1 type (three components) strong motion seismometers on the dam. Three of them 
are at the crest level and two others are near the centre of the dam, but data are available only 
from four of them. Two earthquakes have been recorded recently. All the records are all in 
digital signal with a sampling rate of 0.02 s. Table 3, lists the recorded earthquakes from the 
dam instrumentation. 

 

Table 3: Shahid Rajaee Earthquakes specifications [16]. 

Earthquake 
Date Time 

(UTC) 
Epicentre Ml Report 

Kojoor 2004/5/28 12:38:44 51.56 E 36.30 N 6.1 BHRC 
Agh-ghola 2005/1/10 18:47:30 54/54 E 37.12 N 6.1 BHRC 

 
Based on the data collected from the strong-motion instrumentation of the dam, 

system identification of the Shahid Rajaee dam was performed to identify the natural 
frequencies and damping ratios of the system. The response of the upstream-downstream 
direction of station ST5 (north-south direction) is considered as an output. Based on the AR 
model the identified FRF between each pair of input and output is discussed. 

From different seismic events the identified frequency response functions, as shown in 
Figure 4, show very similar in shapes from different seismic event. The dominant frequency 
of FRF slightly changes from event to event. This can be explained as a result of the changes 
in water level in the reservoir. It is found that the dominant frequency of the dam reservoir 
system decreases with the increase in water level in the reservoir. 

 
Figure 4: FRFs from different seismic events. 

From the seismic event of 10 January 2005 the estimated FRF from same input 
(station ST4) but with different output (station ST5 or station ST3) are discussed. Figure 5 
shows the comparison of the estimated FRF. It was found that the dominant frequency of the 
FRF shows little difference. This can be explained as being due to the motion of two different 



blocks of the dam body during the same earthquake excitation. Generally, the identified FRF 
using different output data is quite similar. 

 
 Figure 5: FRFs from same input but with different outputs 

Discuss the FRF from the response data of 10 January 2005 earthquake, instead of 
using the output data in the north-south direction, the motion along the east-west direction is 
used as an output. Figure 6 shows the identified frequency response function between the 
output and input from station ST4. The identified natural frequencies are listed in Table 4. 
Comparison on the estimated FRF by using the two horizontal motions of stations ST3 and 
ST5 as an output shows that the amplitude of FRF in the north-south direction is smaller than 
the amplitude in the east-west direction. 

 
Figure 6: FRFs along the east-west direction 

The order of the output and the inputs is shown in Table 4. Table 4 also lists the eight 
identified modal frequencies from the earthquake of 10 January 2005. The order of the AR 
model must be carefully selected in order to avoid pole-zero-cancellation. To verify the 
accuracy of the identification result, comparison between the estimated and recorded response 
was made and the cross correlation function of the residuals (the difference between the 
predicted response and the measured response) and input data was examined. The correlation 
function must be within a 95% confidence interval. 

 

Table 4: Shahid Rajaee Frequency Responses. 

North-South Component  East-West Component 
Mode Freq. (Hz)  Mode Freq. (Hz) 
shape ST3 ST5  shape ST3 ST5 



1st 0.85 0.94  1st 0.86 0.89 
2nd 1.91 2.20  2nd 2.02 2.00 
3rd 3.68 ...  3rd ... 3.60 
4th 5.27 5.36  4th 5.26 5.33 
5th 6.80 6.56  5th 6.69 6.53 
6th 8.08 8.17  6th 8.32 8.15 
7th 9.34 9.41  7th 9.33 9.54 
8th 10.73 10.79  8th 10.74 10.75 

ST3 orders for component NS and EW, respectively: 31,30 
ST5 orders for component NS and EW, respectively: 25,18 
ST4 orders for component NS, EW and VT, respectively: 25,35,21 



 

CONCLUSIONS  
 

The problem with the DFT of a finite signal is that it is equivalent to a convolution of 
an infinite signal with a weighting function in the frequency domain. In the other hand the 
auto-regressive model, which is capable of estimating the frequency content of a finite signal 
as if it were an infinite signal, overcomes this limitation. However, the additional step of 
calculating the model parameters may add noise to the prediction. 

It must be pointed out that the identified natural frequencies from the seismic response 
data did not coincide with the analytical finite element results. The reason is that the mode 
shapes calculated from numerical analysis are developed under some limitations and 
assumptions of the computer program. It is necessary to develop a more sophisticated 
computer program for the dam-reservoir system. 

The results of identification can be applied to the post-earthquake safety evaluation of 
dam-reservoir system. One of the tests is to predict the dam responses from the next seismic 
excitation using the identified model from previous results. 

REFERENCES: 

1. Skolnik, D. The Factor Building. nees@UCLA. [Online] 2005. http://www.seas.ucla.edu/~skolnik. 
2. Zhang, Y., et al. Modal parameter identification using response data only. Journal of Sound and 

Vibration. 2005, Vol. 282, pp. 367-380. 
3. Yao, J. T.P. Identification of structural damage in civil engineering. CISM courses and lectures 

No.296. Wien, New York : Springer-Verlag, 1982. 
4. Stoica, P. and Moses, R. Introduction to Spectral Analysis. Upper Saddle River, N.J. : Prentice-

Hall, Inc., 1997. 
5. Poor-Sartip, B. and Lotfi, V. Modal analysis of arch dams including dam-water interaction in time 

domain. Journal of Faculty of Engineering, Tehran University. 2007, Vol. 41, 6, pp. 683-697. 
[Persian]. 

6. Newland, D. E. An introduction to Random vibrations and spectral analysis. New York : John 
Willey & Sons, Inc., 1987. 

7. Neild, S. A., McFadden, P. D. and Williams, M. S. A review of time-frequency methods for 
structural vibration analysis. Engineering Structures. 2003, Vol. 25, pp. 713-728. 

8. Natke, H. G. Identification of vibrating structures. CISM courses and lectures No.272,. Wien, New 
York : Springer-Verlag, 1982. 

9. McVerry, G. H. Structural identification in the frequency domain from earthquake records. 
Earthquake engineering and Structural dynamics. 1980, Vol. 8, pp. 161-180. 

10. Ljung, L. System Identification - Theory for the User. 2nd edition. Upper Saddle River, N.J. : 
Prentice-Hall, Inc. , 1999. 

11. Imai, H., et al. Fundamentals of system identification in structural dynamics. s.l. : Technical 
Report NCEER 89-0008, 1989. 

12. Huang, C. S. Structural Identification from ambient vibration measurement using the multivariate 
AR model. Journal of Sound and Vibration. 2001, Vol. 241, 3, pp. 337-359. 

13. Hong, K. S. and Yun, C. B. Improved method for frequency domain identification of structures. 
Engineering Structures. 1993, Vol. 15, 3, pp. 179-188. 

14. Benzoni, G. and Gentile, C. Two approaches to identify equivalent structural models from 
earthquake responses. Soil dynamics and Earthquake engineering. 1993, Vol. 12, pp. 113-125. 

15. Beck, J. L. and Jennings, P. C. Structural identification using linear models and earthquake 
records. Earthquake engineering and Structural dynamics. 1980, Vol. 8, pp. 145-160. 

16. Signal Processing Toolbox For Use with MATLAB. s.l. : The MathWorks, Inc., 2002. User’s 
Guide. Ver. 6.0. 



17. Iran Strong Motion Network (ISMN). Building & Housing Research Center (BHRC). [Online] 
http://www.bhrc.ac.ir/ISMN. 


